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Sarcoglycan Alpha Mitigates Neuromuscular Junction
Decline in Aged Mice by Stabilizing LRP4
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During aging, acetylcholine receptor (AChR) clusters become fragmented and denervated at the neuromuscular junction (NMJ). Under-
pinning molecular mechanisms are not well understood. We showed that LRP4, a receptor for agrin and critical for NM]J formation and
maintenance, was reduced at protein level in aged mice, which was associated with decreased MuSK tyrosine phosphorylation, suggesting
compromised agrin-LRP4-MuSK signaling in aged muscles. Transgenic expression of LRP4 in muscles alleviated AChR fragmentation
and denervation and improved neuromuscular transmission in aged mice. LRP4 ubiquitination was augmented in aged muscles, sug-
gesting increased LRP4 degradation as a mechanism for reduced LRP4. We found that sarcoglycan « (SGa) interacted with LRP4 and
delayed LRP4 degradation in cotransfected cells. AAV9-mediated expression of SGa in muscles mitigated AChR fragmentation and
denervation and improved neuromuscular transmission in aged mice. These observations support a model where compromised agrin-
LRP4-MuSK signaling serves as a pathological mechanism of age-related NM]J decline and identify a novel function of SGa in stabilizing

LRP4 for NM]J stability in aged mice.
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ignificance Statement

This study provides evidence that LRP4, a receptor of agrin that is critical for NM] formation and maintenance, is reduced at protein level
in aged muscles. Transgenic expression of LRP4 in muscles ameliorates AChR fragmentation and denervation and improves neuromus-
cular transmission in aged mice, demonstrating a critical role of the agrin-LRP4-MuSK signaling. Our study also reveals a novel function
of SGato prevent LRP4 degradation in aged muscles. Finally, we show that NM] decline in aged mice can be mitigated by AAV9-mediated
expression of SGa: in muscles. These observations provide insight into pathological mechanisms of age-related NM]J decline and suggest
that improved agrin-LRP4-MuSK signaling may be a target for potential therapeutic intervention.
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Introduction
Motor neurons in the spinal cord innervate muscle fibers to form
the neuromuscular junctions (NM]Js; Sanes and Lichtman, 2001;
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muscle fibers become atrophic (Pellegrino and Franzini, 1963;
Stonnington and Engel, 1973; Hamburger, 1980; Delbono,
2003). Evidence suggests that muscle aging is associated with
NM]J decline (Gutmann et al., 1971; Courtney and Steinbach,
1981; Grimby and Saltin, 1983; Doherty et al., 1993; Roos et al.,
1997; Deschenes et al., 2010; Valdez et al., 2010; Samuel et al.,
2012). Typically, acetylcholine receptor (AChR) clusters on the
postjunctional membrane are fragmented into small islands in
aged mice and AChR density is reduced; the perimeter lengths of
AChR-stained areas are increased (Deschenes et al., 2010; Valdez
et al., 2010; Li et al., 2011). Motor axon terminals are disorga-
nized and contain varicosities (Rosenheimer, 1990; Kawabuchi et
al., 2001; Messi and Delbono, 2003; Valdez et al., 2010; Chai et al.,
2011; Wang et al., 2011). Some clusters are not or only partially
innervated or innervated by multiple axon terminals (Gutmann
and Hanzlikovd, 1966; Courtney and Steinbach, 1981; Balice-
Gordon, 1997; Valdez et al., 2010; Chai et al., 2011; Samuel et al.,
2012). There appears to be a reduction in the number of motor
neurons and in the number and diameter of axons in the ventral
roots (Tomlinson and Irving, 1977; Mittal and Logmani, 1987;
Hashizume et al., 1988; Valdez et al., 2010). Perhaps due to motor
neuron loss and reinnervation of muscle fibers that have lost
innervation by neighboring axons, the number of motor units is
reduced (Larsson and Ansved, 1995; Delbono, 2003) and neu-
rotransmission in remaining NMJs was reduced or altered (Gut-
mann et al., 1971; Banker et al., 1983; Kelly and Robbins, 1983;
Kurokawa et al., 1999).

The NMJ formation is controlled by the agrin-LRP4-MuSK
pathway. During embryonic development, motor neuron termi-
nals release agrin that binds to LRP4, a transmembrane protein,
to activate the transmembrane tyrosine kinase MuSK (DeChiara
et al., 1996; Gautam et al., 1996; Glass et al., 1996; Weatherbee et
al., 2006; Kim et al., 2008; Zhang et al., 2008); and ensuing intra-
cellular signaling that leads to NMJ formation. Recent studies
indicate that this pathway is critical for NMJ maintenance. Con-
ditional mutation of agrin, LRP4 or MuSK after NM]J formation
causes NMJ disintegration (Hesser et al., 2006; Samuel et al.,
2012; Barik et al., 2014). There are antibodies against agrin, LRP4,
and MuSK in patients with myasthenia gravis, an acquired auto-
immune disorder (Hoch et al., 2001; Pevzner et al., 2012; Zhang
etal., 2012, 2014; Gasperi et al., 2014). In animal models, induc-
ing antibodies against agrin, LRP4 or MuSK causes muscle weak-
ness, impairs neuromuscular transmission and disrupts NM]J
structure (Jha et al., 2006; Klooster et al., 2012; Huijbers et al.,
2013; Shen et al., 2013; Yan et al., 2018).

In this study, we showed that LRP4 was reduced at protein level
in muscles of aged mice, accompanied by weakened MuSK tyrosine-
phosphorylation, an indicator of kinase activation. Expression of
LRP4 specifically in muscles ameliorated aging-associated defi-
cits including AChR cluster fragmentation, denervation, and
impaired neuromuscular transmission. To understand the mech-
anisms of LRP4 reduction in aged muscles, we screened for pro-
teins that were implicated in NM]J and muscle stability, which
were also reduced in aged muscles. This led to the identification
of sarcoglycan « (SGa), a key component of the dystrophin-
glycoprotein complex (DGC). We found that SGa was present at
the NMJ, and SGa, but not SG8, interacted with LRP4. Enhanc-
ing SGa level increased the stability of LRP4. Viral expression of
SGa diminished aging-associated NM]J deficits in vivo. Together,
the results reveal LRP4 reduction as a mechanism of NMJ decline
in aged mice and identify agrin-LRP4-MuSK signaling as unap-
preciated therapeutic target.
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Materials and Methods

Mouse lines generation and genotyping. To generate Flag-Lrp4 transgenic
mice, Flag-Lrp4 cDNA was inserted into transgene construct under hu-
man a-skeletal actin (HSA) promoter at NotI and Pacl restriction en-
zyme sites. The recombinant transgene construct was pronuclearly
microinjected into mouse zygotes, which were introduced into pseudo-
pregnant females. Offspring were screened for the correct genotype by
PCR of tail DNA. Three-month- and 24-month-old mice were acquired
from the National Institute on Aging. Lrp4™"™ mice were as described
previously (Weatherbee et al., 2006). Mice were backcrossed into
C57BL/6 background and housed in a room with a 12 h light/dark cycle
and ad libitum access to water and rodent chow diet (Diet 7097, Harlan
Teklad). Unless otherwise indicated, both genders were used in the study
and experiments were approved by the IACUC of Augusta University
and Case Western Reserve University.

Reagents and antibodies. Chemicals were purchased from Sigma-
Aldrich unless otherwise indicated. CF568-labeled a-bungarotoxin (a-
BTX; #00006; 1:500—1000 for staining) was purchased from Biotium.
Antibodies used were as follows: AChRS (88B; 1:2000 for Western blot)
from ThermoFisher Scientific; AChRe (ab65180; 1:2000 for Western
blot), SGa (ab189254; 1:500 for staining and 1:2000 for Western blot)
from Abcam; Ubiquitin (sc-8017; 1:1000 for Western blot), AChRa (sc-
65829; 1:1000 for Western blot), and AChR (sc-11371; 1:1000 for West-
ern blot) from Santa Cruz Biotechnology; DOK7 (AF6398; 1:1000 for
Western blot) from R&D Systems; neurofilament (C28E10; 1:500 for
staining) and synapsin (D12G5, 1:500 for staining) from Cell Signaling
Technology; GAPDH (NB 600-501; 1:3000 for Western blot) from
Novus; V5 (V8012; 1:1000 for Western blot), laminin (041M4799; 1:200
for staining) and GFP (11814460001; 1:3000 for Western blot and 1:500
for staining) from Sigma Aldrich. AlexaFluor 488 goat anti-rabbit IgG,
AlexaFluor 488 goat anti-mouse IgG, horseradish peroxidase (HRP)-
conjugated goat anti-rabbit IgG, and goat anti-mouse IgG antibodies
(1:4000 for Western blot), anti-agrin, anti-LRP4, anti-MuSK, anti-
phosphotyrosine, anti-Rapsyn, anti-HSP90f3, and anti-Flag antibodies
were described previously (Luo et al., 2008; Zhang et al., 2008; Shen et al.,
2013; Barik et al., 2014; Zhao et al., 2017).

Immunofluorescence. For NM]J staining, muscles were fixed with 4%
paraformaldehyde (PFA) in PBS at 4°C overnight, rinsed with 0.1 M
glycine in PBS for 20 min and incubated with the blocking buffer (5%
BSA, 2% Triton X-100, and 5% goat serum in PBS) for 1 h at room
temperature. Afterward, they were incubated with the blocking buffer
with primary antibodies at 4°C overnight. After washing three times for
30 min each with 0.5% Triton X-100 in PBS, the samples were incubated
with fluorescent-labeled secondary antibodies overnight at 4°C. Samples
were washed with 0.5% Triton X-100 in PBS three times for 30 min each
and mounted with VECTASHIELD mounting medium (H1200) and
covered with coverslip.

To prepare cross-sections, muscles were fixed with 4% PFA in PBS at
4°C overnight and dehydrated in 30% sucrose at 4°C overnight. They
were cut into 25 wm sections on a cryostat (HM550, ThermoFisher Sci-
entific) at —25°C. Sections were incubated with the blocking buffer for
1 h at room temperature and then with primary antibodies at 4°C over-
night. After washing three times for 10 min each with 0.5% Triton X-100
in PBS at room temperature, samples were incubated with fluorescent-
labeled secondary antibodies overnight at 4°C and mounted with
VECTASHIELD mounting medium. Z serial images were collected with
a Zeiss confocal laser-scanning microscope (LSM 700) and collapsed into
a single image.

Reverse transcription-PCR analysis. Total RNA was purified from mus-
cles with Trizol (Invitrogen) and reverse transcribed to cDNAs with Go-
Script reverse transcription kit (Promega). cDNAs were used as template
in quantitative PCR (qPCR) in a 20 ul reaction system containing SYBR
GreenER qPCR mix with gene-specific primers. PCR included an initial
step at 95°C (3 min), followed by 40 cycles consisting of denaturation at
95°C (15 s), annealing and extension at 60°C (60 s). Gapdh was used as
internal control. Primers for individual genes were as follows: Chrna (F:
5'-CTCTC GACTG TTCTC CTGCT G-3', R: 5'-GTAGA CCCAC
GGTGA CTTGT A-3'); Chrnd (F: 5'-GAATG AGGAA CAAAG GCTGA
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TCC, R: 5'-GGTGA GACTT AGGGC GACAT-3'); Ache (F: 5'-GGCTC
CTACT TTCTG GTTTA CGG-3’, R: 5'-GGCTG CCAGG TCACT
TGCTT-3'); Lrp4 (F: 5'-AGTCA CCGCA AGGCT GTCAT TA-3', R:
5'-GTTGG CACTA TTGAT GCTCT TGG-3"); Musk (F: 5'-ACCGT
CATCATCTCCATCGT GT-3',R: 5'-CTCAATGTTA TTCCT CGGAT
ACTCC-3"); Sgca (F: 5'-ACTGA AGCCA CAGAC CGAGA CT-3', R:
5'-ATGAT GTAAG CCAGC AACAG AGTAA-3"); Sgcb (F: 5'-GAGAG
CGGTCTGCTG AGGTT C-3',R:5"-CGCTG GTGAT GGAGG TCTTG
T-3"); Sgcg (F: 5'-GCTGC CTATA CCTAT TCGTT CTTCT C-3' R:
5'-CACTC TGGAG CGTAT TTCTT TGG-3"); Sged (F: 5'-ATTCC
CACCA CAGGA GCACC ATG-3', R: 5'-GGAGC AGGAC AAAGA
AATAC AGG-3"); Gapdh (F: 5'-AAGGT CATCC CAGAG CTGAA-3',
R: 5'-CTGCT TCACC ACCTT CTTGA-3").

Western blot and coimmunoprecipitation assay. Western blotting and
coimmunoprecipitation (co-IP) assays were performed as described pre-
viously (Shen et al., 2013; Li et al., 2016). Briefly, cells and tissues were
homogenized and lysed in the cell lysis buffer containing 150 mm NaCl,
2.5 mm EDTA, 50 mm Tris-HCI, pH, 7.4, 50 mm NaF, 2% SDS, 0.5%
sodium deoxycholate, 20% glycerol, 0.1% sodium vanadate, 1% PMSF
and 1% protease inhibitor cocktail (04693159001, Sigma-Aldrich). Ly-
sates were subjected to centrifugation at 12,000 X g for 10 min at 4°C.
Supernatants (referred as lysates) were diluted with 4X loading buffer
containing 20% Tris-HCI, pH, 8.8, 8% SDS, 8% p-mercaptoethanol,
0.04% bromophenol blue, 40% glycerol, and heated at 95°C for 10 min.
Samples were resolved by SDS-PAGE running and transferred to nitro-
cellulose membrane (catalog #1620112, Bio-Rad). The membrane was
blocked in 5% nonfat milk for 1 h and incubated in primary antibodies
overnight at 4°C. After washing with 0.1% Tween 20 in PBS 3 times for 10
min each, membranes were incubated in HRP-conjugated secondary
antibodies for 1 h at room temperature. Immunoreactive protein bands
were visualized by a kit of enhanced chemiluminescence (Pierce).

For co-IP assay, cell or tissue lysates were diluted by adding nine vol-
umes of modified RIPA buffer (150 mm NaCl, 2.5 mm EDTA, 50 mMm
Tris-HCI, 50 mm NaF, 0.1% sodium vanadate, 1% PMSF, and 1% pro-
tease inhibitor cocktail) and incubated with 1-2 ug antibodies at 4°C
overnight. The reaction was then incubated with 5 ul protein A/G aga-
rose beads (sc-2003, Santa Cruz Biotechnology) at 4°C for 45 h. Pro-
teins pulled down by beads were subjected to Western blot analysis.

Electromyography and electrophysiological recording. Mice were anes-
thetized with ketamine and xylazine mixture (100 and 10 mg/kg body
weight, respectively) on a 37°C heating pad. The stimulation needle elec-
trode (TECA, 092-DMF25-S) was inserted near the sciatic nerve of the
left leg at thigh level and connected to an isolator (ISO-Flex, AMPI). The
reference needle electrode was inserted into the Achilles tendon whereas
the recording needle electrode was inserted into the middle of left gas-
trocnemius, both of which were connected to AxoPatch 200B Amplifier
(Molecular Devices). Stimulation of the sciatic nerve was triggered with a
series of 10 stimuli at 1, 5, 10, 20, and 40 Hz. Compound muscle action
potentials (CMAPs) were recorded by Digidata 1322A and analyzed by
Clampfit 9.2 software (Molecular Devices).

To study neuromuscular transmission, left hemi-diaphragm together
with ribs and phrenic nerves were dissected, mounted on SYLGARD gel
and perfused in oxygenated (95% O,, 5% CO,) Ringer solution (in mm:
137 NaCl, 5 KCl, 12 NaHCO,, 1 NaH,PO,, 1 MgCl,, 2 CaCl,, 11
p-glucose, pH 7.3) at room temperature. To record miniature endplate
potentials (mEPPs), microelectrodes (CV203 BU HEADSTAGE, 20-40
m{), filled with 3 M KCl) connected to the AxoPatch 200B Amplifier was
inserted to central regions of the muscle. Recordings were performed
when resting membrane potentials were at —65~—80 mV. Five record-
ings were performed per diaphragm, each lasting 2-3 min. Data were
collected with AxoPatch 200B Amplifier and Digidata 1322A and ana-
lyzed by Clampfit 9.2 software.

In vivo twitch and tetanic force measurement. Torque muscle strength
was measured on male mice as previously reported (Ingalls et al., 2004;
Arpke etal., 2013; Zhao et al., 2017). Briefly, mice were anesthetized with
isoflurane continuously supplied by VetFlo anesthesia system (Kent Sci-
entific) and placed on a 37°C heating pad. The knees were fixed by gently
pressing the knee clamps and the feet were fixed onto the footplate that
was connected to the servomotor (Aurora Scientific 1300A). The angle of

Zhao, Shen et al. @ Sarcoglycan Alpha Mitigates Neuromuscular Junction

the footplate was adjusted to reach maximal twitch force before experi-
ment. The sciatic nerve was exposed at thigh level and stimulated at 5 mA
by two needle electrodes. Stimulation pulse width was 0.2 ms for all
experiments. Tetanic contractions were induced by 300 ms stimuli at
frequencies of 50, 100, 150, and 200 Hz. There was an interval of 30 s
between each twitch and an interval of 2 min between each tetanic force
measurement. Twitch and tetanic forces were normalized by body
weight.

AAV9 production and animal treatment. Human SGCA cDNA was
amplified from pLX304-Sgca plasmid (clone HsCD00435026, DNASU
by PCR primers (F: 5'-CCGGA ATTCG CCACC ATGGC TGAGA
CACTC TTCTG GACT-3’, R: 5'-GCACC GGTCC GTGCT GGTCC
AGAAT GAGGG G-3') and cloned to AAV-CMV-GFP plasmid (67634,
Addgene) at EcoRI and Agel restriction enzyme sites. AAV9-SGa-GFP
and AAV9-CMV-GFP were prepared by the Viral Vector Core at Emory
University Department of Neurology as previously described (Yangetal.,
2017). Virus (3050 ul of 1-2 X 10" vg/ml) was delivered by intramus-
cular injection or by intravenous injection (via tail vein; 5 X 10 ~1 X
10'2 vg/mouse).

Statistical analysis. Data were analyzed by unpaired ¢ test, one-way
ANOVA (with Tukey’s multiple-comparison test) and two-way ANOVA
(with Bonferroni’s post hoc test). Unless otherwise indicated, 10-20
NMJs or muscle fibers were quantified for each mouse. The sample size
(N) was based on the literature (Li et al., 2008; Wu et al., 2012; Shen et al.,
2013; Barik et al., 2014; Zhao et al., 2017). Data are shown as mean *+
SEM. Statistical difference was considered when p < 0.05.

Results

Reduced LRP4 protein level and MuSK phosphorylation in
aged mice

In light of the critical role of agrin-LRP4-MuSK signaling in NMJ
maintenance (Hesser et al., 2006; Samuel et al., 2012; Barik et al.,
2014) and similar NMJ deficits (fragmented AChR clusters, re-
duced AChR density, and increased denervation) between aged
mice and conditional mutant mice lacking agrin and LRP4 in
adult animals, we determined whether levels of agrin signaling
proteins were altered in muscles of aged mice. Because agrin sig-
naling proteins are concentrated at the NMJ (Merlie and Sanes,
1985), we focused on synaptic region (SR), which is localized in
the central region of muscle fibers (Fig. 1A). As shown in Figure
1B, mRNAs of AChR subunits and AChE were enriched in the SR
region compared with the nonsynaptic region (NSR), which was
also supported by Western blot. Western blot analysis showed
similar levels of AChRe, B and e-subunits between muscles from
3- and 24-month-old mice, with the exception of an increased
protein level of 8-subunit (Fig. 1C,D), indicating that the protein
levels of AChR subunits were not reduced among aging, consis-
tent with previous report (Ibebunjo et al., 2013). In contrast,
LRP4 protein level was reduced by 50% in 24-month-old (24 M)
SRs compared with 3-month-old (3 M) SRs. This effect was spe-
cific because levels of agrin, MuSK, DOK?7, rapsyn were similar
between the young and old samples (Fig. 1 E,F). Concomitantly,
MuSK phosphorylation was reduced in aged muscles (Fig.
1G,H), indicating compromised MuSK activation. These results
suggest that impaired agrin signaling in aged muscles is probably
due to loss of Lrp4 protein.

Diminished NM]J deficits in aged mice by LRP4 expression

Ifloss of LRP4 contributes to NM]J deficits in aged mice, express-
ing LRP4 should be able to diminish the deficits. To test this
hypothesis, we generated transgenic mice where the expression of
Flag-tagged LRP4 is driven by muscle-specific HSA promoter
(Flag-Lrp4 transgenic mice hereafter; Fig. 2A). Expression of the
transgene Flag-Lrp4 was dependent on myotube formation after
transfection in C2C12 myoblast (Fig. 2B), in agreement with pre-
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Figure 1.  Reduced LRP4level and MuSK phosphorylation in aged mice. A, Diagram of a hemi-diaphragm to illustrate SR and NSR. B, Enriched AChR mRNA (left) and protein (right) in SR.t,) =

34.4,%%p = 4.2k-6for Chrna; t 4 = 9.6,***p = 0.00067 for Chrnd; t,,y = 6.78,%p = 0.019 for Ache; N = 3 mice per group, unpaired ¢ test. €, Increased AChR-6 protein level in aged muscles. D,
Quantification of data in C. f,) = 5.5%p = 0.021 for AChRS. E, Reduced LRP4 protein level in aged muscles. F, Quantification of data in E. £,y = 5.9, **p = 0.004. G, Reduced tyrosine-
phosphorylation of MuSK in aged muscles. H, Quantification of p-MuSK over MuSK in G. t, = 4.7, *p = 0.019. (~H, SRs of diaphragms of indicated ages were homogenized and subjected to

Western blotting. N = 3 mice per group, unpaired t test.

vious reports (van der Ven et al., 1992; Brennan and Hardeman,
1993). Western blot analysis indicated that Flag-Lrp4 is expressed
specifically in skeletal muscles, but not in other tissues and organs
(Fig. 2C). Importantly, crossing Flag-Lrp4 transgenic mice was
able to fully restore the declined MuSK phosphorylation level
(Fig. 2D) and rescue NM]J deficits in Lrp4™"™ mice that otherwise
fail to form the NMJ because the lack of Lrp4 (Fig. 2E), indicative
of respectable in vivo function of the Lrp4 transgene allele.
Hindlimb muscles as well as the diaphragm are vulnerable to
aging (Valdez et al., 2012). Tibialis anterior (TA) muscles were
stained whole-mount with CF568 a-bungarotoxin (a-BTX, red)
to label AChR and anti-neurofilament/synapsin (NF/Syn) anti-
bodies (visualized by AlexaFluor 488 goat anti-rabbit IgG, green)
to label axon terminals. In 3 M mice, NMJs appeared as charac-
teristic pretzel-like structures and AChR clusters were fully inner-
vated (Fig. 3A, B). In contrast, in 24 M mice, a majority (~80%)
of AChR clusters were fragmented and denervated (Fig. 3A-E).
We quantified the innervation of AChR clusters as previously
described (Macpherson et al., 2015; Zhao et al., 2017): fully in-
nervated AChR clusters (80-100% neve-endplate overlap), par-
tially or fully denervated AChR clusters (<80% overlap). Fully
innervated AChR clusters were reduced by ~50% in 24 M mice.
These results were in accordance with previous studies (Valdez et
al,, 2010). Interestingly, the percentages of fully innervated end-
plate were increased from 51.1% in 24 M control mice to 72.2%
in 24 M Flag-Lrp4 transgenic mice (24M-Lrp4; F(, 15y = 69.4,p =
0.0001; Fig. 3A,C). On the other hand, NM]J fragmentation was
improved in transgenic mice compared with control mice at 24 M
(Fig. 3B, D,E). Fragmentation numbers per NM]J in 24 M trans-
genic mice were reduced to 4.7 £ 1.3, from control mice at the
same age (7.3 * 0.8; F, 1,y = 29.3, p = 0.0022; Fig. 3 B, D) and the
percentages of fragmented NM]J were reduced to 52 * 10% from

75 * 11% in aged mice (F, ) = 58.1, p = 0.0065; Fig. 3 B,E).
The AChR intensity was also increased by 48% in 24M-Lrp4 mice
(Fa,12) = 29.3, p = 0.0089; Fig. 3 B, F). These results suggest that
Lrp4 expression is able to mitigate NM]J fragmentation and poor
innervation in aged mice.

Improved neuromuscular transmission and muscle function
in aged Flag-Lrp4 transgenic mice

To determine whether Lrp4 expression improves neuromuscular
transmission, we measured CMAP, action potentials that are trig-
gered by 10 consecutive nerve stimuli. CMAP amplitudes be-
tween first and 10th stimuli were similar among young and old
groups at 1, 5, and 10 Hz of stimulation frequency, just as previ-
ously reported (Shen et al., 2013; Willadt et al., 2016; Zhao et al.,
2017). However, at stimulation frequencies 20 and 40 Hz, CMAP
amplitudes at 10th stimuli versus first stimuli were smaller in
24 M mice compared with 3 M mice (Fig. 4A-C). At 40 Hz,
CMAP reduction was detectable even at fourth stimulation (Fig.
4B). These results suggest compromised neuromuscular trans-
mission in aged muscles. Interestingly the age-dependent reduc-
tion in CMAP amplitudes was diminished in Flag-Lrp4
transgenic mice compared with control mice of the same age,
indicative of a beneficial effect by Lrp4 expression. In addition, we
measured mEPPs, local depolarizing potentials elicited by spon-
taneously released ACh. As shown in Figure 4D—F, mEPP ampli-
tudes were reduced in 24 M mice, supporting the notion of
compromised neuromuscular transmission. Again, this reduc-
tion was attenuated in Flag-Lrp4 transgenic mice (F, ) = 18.7,
p = 0.035; Fig. 4D, F). These results demonstrate that neuro-
muscular transmission is compromised in aged mice, which
could be diminished by Lrp4 expression. Aged muscle fibers
were smaller and had more centrally localized nuclei, a sign of
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muscle regeneration (Fig. 5A—C). These two phenotypes were
diminished by Lrp4 expression. In agreement, Flag-Lrp4 ex-
pression increased twitch and tetanic forces in aged mice (Fig.
5D-F), suggesting improved muscle function.

Reduced LRP4 protein stability in aged mice

Next, we explored mechanisms of low LRP4 protein level in mus-
cles of aged mice. A recent report showed increased mRNA levels
of Lrp4 and Musk in gastrocnemius muscles of 24M—27M mice
(Ibebunjo et al., 2013). Genes critical for NM]J formation and
maintenance are transcribed specifically in subsynaptic nuclei
(Merlie and Sanes, 1985). We extracted RNAs from SRs as de-
scribed in Figure 1 and performed RT-PCR. As shown in Figure
6A, both Lrp4 and Musk mRNA levels were higher in synaptic
regions of 24 M mice compared with those of 3 M mice. This
result suggests that reduced protein level of LRP4 is unlikely due
to a problem at transcription level, rather a posttranscriptional
mechanism. We determined the pathway of LRP4 degradation in
muscle cells. C2C12 myotubes were treated with chloroquine (50
uM), an inhibitor of lysosome degradation or MG132 (30 um), an
inhibitor of proteasome degradation for 6 h. As shown in Figure
6, Band C, MG132 increased LRP4 protein level whereas chloro-
quine had no detectable effect, suggesting that LRP4 is mainly
degraded by proteasomes in muscle cells. To determine whether
this is the case in vivo, muscle samples from 3 M and 24 M mice
were lysed and immunoprecipitated with anti-LRP4 antibody
and blotted for ubiquitin. The amount of ubiquitinated LRP4
(normalized by total LRP4) was increased in 24 M mice com-

pared with 3 M mice (Fig. 6 D,E). The above results implicate
increased LRP4 degradation by proteasome in aged muscles.

Requirement of SGa for LRP4 protein stability

To investigate the molecular mechanism regulating LRP4 protein
stability in muscles, we screened for proteins that interact with
LRP4 and that have been implicated in neuromuscular disorders,
and identified SGa. SGar is a member of the sarcoglycan complex
consisting of SGa, 3, 7y, and 8 in muscles. The SG complex is a
subcomplex of the DGC that also includes the dystroglycans,
syntrophin, and sarcospan. The DGC complex links the interior
cytoskeleton to the ECM and is important for sarcolemma integ-
rity. As shown in Figure 7A, in HEK293 cells, Flag-LRP4 copre-
cipitated with cotransfected SGe, but not SG8, indicating the
specificity of the interaction. To demonstrate that LRP4 interacts
with SGa in vivo, muscle homogenates were from Flag-Lrp4
transgenic mice and incubated with anti-SGa antibody and nor-
mal IgG (as control) and resulting precipitates were probed with
anti-Flag and anti-SGa antibody. Flag-LRP4 was present in the
immunocomplex precipitated by anti-SGa antibody (Fig. 7B).
Interestingly, SGa was reduced in aged muscles by 47% and 43%
at mRNA (Fig. 7C) and protein (Fig. 7D) levels, respectively. At
muscle cross-sections, SGa was associated with muscle mem-
brane and present at the NM]J (labeled by a-BTX) in 3 M mice. In
muscles of 24 M mice, SGa staining was coarse; there were areas
that were labeled by a-BTX, but not anti-SGa antibody (Fig. 7E,
arrowhead). The observations suggest potential SGa loss of func-
tion in aged muscles. Next, we determined whether SGa may
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increase LRP4 stability by characterizing LRP4 degradation in
cells cotransfected with SGa-V5 or empty vector (as control).
In the presence of cycloheximide (CHX; 50 ug/ml) to block pro-
tein synthesis, LRP4 degraded slower in cells expressing SGa than
in control cells. Twelve hours after CHX treatment, 77% of LRP4
remained detectable in the presence, whereas in contrast, >50%
LRP4 was degraded in the absence of SGa (Fig. 7F,G). Alto-
gether, these results demonstrate that SGa is required for LRP4
stability in muscle cells and suggest a mechanism for lower levels
of LRP4 in aged mice.

Alleviation of neuromuscular aging by AAV-SGa

Our hypothesis predicts that increasing SGe levels may increase
LRP4 stability in aged muscles and thus ameliorate NMJ aging.
To test this, we generated adeno-associated virus (AAV)-
expressing human SGCA (AAV9-SGa-GFP) by subcloning hu-
man SGCA into AAV-CMV-GFP (between EcoRI and Agel sites;
Fig. 8A). As shown in Figure 8B, SGa was expressed in HEK293
cells transfected with the recombinant construct. After virus
package and purification, we injected these AAVs (5 X 10''~1 X
10'? vg/mouse) into 24 M mice and looked for GFP labeled mus-
cle fibers. As shown in Figure 8, C and D, 90% or more of the
muscle fibers were GFP-positive in AAV9-GFP-and AAV-SGa-
GFP-infected muscles, respectively. This result indicates high in-
fection rates of muscle fibers by AAV9 viruses. The slightly lower
infection efficiency of AAV9-SGa-GFP may be due to large cargo
of SGa (Wu et al., 2010b). We analyzed LRP4 levels 6 weeks after
intravenous injection. As shown in Figure 8, E and F, LRP4 pro-
tein levels were increased in aged muscles infected with AAV9-
SGa-GFP compared with AAV9-GFP infected muscles. This was
associated with a reduction in ubiquitinated LRP4 (Fig. 8 E,G).

Interestingly, in addition to the dominant, smear bands at 210
kDa and above (predicted from calculated molecular weight), a
lower band was detected in precipitates with anti-LRP4 antibody
(Figs. 6D, 8E, respectively). The identity of this band is unclear
and may represent an isoform of LRP4 or cleaved product. Be-
cause it was not present when total muscle lysates were probed
with anti-LRP4 antibody (Figs. 1E, 6D), but only detectable in
immunoprecipitated samples, we speculate that the lower band
may be generated by a ubiquitin-dependent cleavage. Neverthe-
less, our results indicate that restoring SGa in aged muscles ele-
vated LRP4 levels by reducing LRP4 degradation.

Next, we compared NMJs of aged mice after viral injection.
There were more endplates in TA that were fully innervated in 24
M mice 6 weeks after intramuscular injection of AAV9-SGa-GFP
(24M-SGa) compared with mice injected with AAV9-GFP
(24M-GFP; increased from 49.1 to 69.5%, F(, 5,y = 29, p =
0.0051; Fig. 9A—C). NM]J fragment numbers and percentage of
fragmented endplates were reduced by AAV9-SGa-GFP (frag-
ment numbers: 7.6 * 0.6 for AAV9-GFP vs 4.9 + 1.3 for AAV9-
SGa-GFP, F, |,, = 25.8, p = 0.0023; fragmented NM]Js: 76.6 *
10.7% vs 49.4 = 5.9% for AAV9-GFP and AAV9-SGa-GFP, re-
spectively; F(, 15, = 93, p = 0.0003; Figure 9 B, D,E). Additionally,
AChR cluster intensity was increased by 52.6% in aged mice
treated with AAV9-SGa-GFP compared with AAV9-GFP control
(F2,12) = 35.9, p = 0.0028; Fig. 9F). Functionally, CMAPs were
improved in aged muscles after viral expression of SGa. The 10th
to first ratios of CMAP at 20 and 40 Hz of stimulation were 82.6
and 78.5% in GFP group, which were increased to 90.5 and 87.1%
in SGa group (Fig. 10A—C). mEPP amplitudes were increased in
SGa group compared with GFP group (Fig. 10D-F). Moreover,
similar to Lrp4 overexpression, improvement was observed in
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muscle fiber size (Fig. 11A-C) and muscle force (Fig. 11D-F) in
24 M mice treated with AAV9-SGa-GFP compared with AAV9-
GFP control. Altogether, these observations demonstrate that
NM]J deficits and muscle atrophy in aged mice can be mitigated
by storing SGa levels, which increases LRP4 by reducing its
degradation.

Discussion

In this paper, we report that LRP4 protein level was reduced in
aged muscles. This reduction was associated with diminished ty-
rosine phosphorylation of MuSK, suggesting compromised
agrin-LRP4-MuSK signaling as a potential mechanism of NMJ
decline in aged mice. To test this hypothesis, we generated a
transgenic mouse strain to express Lrp4 specifically in skeletal
muscles and found that conditional overexpression of Lrp4 in
muscles alleviated NMJ fragmentation and denervation and im-
proved NMJ transmission in aged mice. Because Lrp4 mRNA was
not reduced in aged muscles, we posited a compromised stability
of LRP4 protein; indeed, ubiquitinated LRP4 was increased in
aged mice. Mechanistically, we found that LRP4 interacted with
SGa, which was critical for LRP4 stability in coexpressing cells
and was reduced at aged muscles. Finally, we demonstrate that
NM]J decline in aged mice could be ameliorated by AAV9-
mediated overexpression of SGa. These observations demon-
strate that agrin-LRP4-MuSK signaling is necessary for NM]J

maintenance in aged mice and identify a novel mechanism to
regulate LRP4 stability by SGa. Our results provide insight into
pathological mechanisms of sarcopenia and related NM]J decline
and suggest that improved LRP4 stability may be a target for
potential therapeutic intervention.

Mechanisms of NM]J decline in aged mice could be complex.
Although the AChR delta subunit was increased in aged muscles,
there was no change in other subunits (Fig. 1C,D). This is in
general agreement with changes at mRNA level: increased for «
and delta subunits (Ibebunjo et al., 2013). The increase in « sub-
unit mRNA without parallel increase at protein level suggests a
different mechanism for a subunit stability in aged mice. Appar-
ently, changes in AChR mRNAs and proteins in aged muscles are
different to those in response to denervation. Both mRNA and
protein levels of all subunits are increased in denervated muscles
(Wu et al., 2010a; Tintignac et al., 2015; Li et al., 2018). Never-
theless, these results suggest that NM]J decline in aged muscles
may not be caused by a reduction in AChR protein levels. Recent
evidence indicates that the agrin-LRP4-MuSK signaling is not
only important for NMJ formation, but also critical for its main-
tenance. When agrin, LRP4, or MuSK is ablated in adulthood
(i.e., after NM]J formation), NM]J structures are disrupted in mu-
tant mice and neuromuscular transmission compromised (Hes-
ser et al., 2006; Samuel et al., 2012; Barik et al., 2014). Likewise,
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eliciting antibodies against agrin, LRP4 and MuSK in mice im-
pairs NMJ structure and function (Jha et al., 2006; Klooster et al.,
2012; Pevzner etal., 2012; Zhang et al., 2012, 2014; Huijbers et al.,
2013; Shen et al,, 2013; Yan et al.,, 2018). Intriguingly, despite
increased at mRNA levels in aged mice (Ibebunjo et al., 2013),
LRP4 was reduced at protein level. This was associated with re-
duced tyrosine phosphorylation of MuSK (Fig. 1E-G). Because
there was no reduction in AChR subunit proteins in aged mus-
cles, a parsimonious explanation of these results is that NM]
deficits in aged muscles is caused by AChR clustering, possibly
because of reduced agrin signaling. This notion is supported by
the finding that NM]J deficits in aged mice could be mitigated by
restoring LRP4 (Fig. 3).

The pathological significance of NMJ fragmentation is un-
clear. Although NMJs were “fragmented” in aged mice, the total
area labeled by BTX was not reduced (Willadt et al., 2016). We
found a reduction in AChR density in NMJ areas of aged muscles
and in mEPP amplitudes (Figs. 3F, 4F, 9F, 10F), suggesting
impaired neuromuscular transmission. Restoring LRP4 levels
diminished these deficits in aged mice, revealing possible mech-
anisms of improved CMAPs. At the moment, our data were un-
able to conclude or exclude a role of reduced number of NMJ
fragmentations in functional recovery.

It is worthy pointing out that CMAPs are influenced by many
biological factors ranging from anatomical and physiological as-
pects to architectural properties of the muscle, as summarized by

arecent review (Rodriguez-Falces and Place, 2018). In particular,
CMAP reduction may be caused by increase in axonal recruit-
ment threshold and impaired fiber sarcolemma membrane excit-
ability, in addition to failure in neuromuscular transmission.
High-frequency stimulations could deplete readily releasable ves-
icles. In addition, it could also disrupt the axon firing synchrony
and elevate nerve threshold in response to stimuli probably be-
cause of axon hyperpolarization (Krnjevic and Miledi, 1958; Du-
chateau and Hainaut, 1985; Vagg et al., 1998; Rodriguez-Falces
and Place, 2018). On postsynaptic side, high-frequency stimula-
tion could increase muscle fiber threshold (Krnjevic and Miledji,
1958; Rodriguez-Falces and Place, 2018). Because restoring LRP4
diminished CMAP deficits in aged mice, future experiments are
warranted to determine whether nerve threshold and/or sarco-
lemma membrane excitability are impaired by aging and their
deficits ameliorated by enhancing agrin signaling.

The DGC is a transmembrane complex consisting of (1) cyto-
skeleton linker proteins dystrophin or utrophin at the synapse,
(2) transmembrane proteins dystroglycans (¢, 8), SGs (e, B, 7y, 6
in muscles; € and { in other tissues) and sarcospan and (3) cyto-
plasmic proteins dystrobrevins and syntrophins (Singhal and
Martin, 2011; Tintignac et al., 2015; Li et al., 2018). It links the
interior cytoskeleton to the ECM and is essential for sarcolemma
integrity and thus preventing muscle fiber damage caused by
contraction (Ervasti et al., 1990; Sunada and Campbell, 1995;
Hack et al., 2000a,b). DGC proteins are present at the NM]J
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(Ohlendieck et al., 1991b; Adams et al., 2000; Grady et al., 2000).
a-Dystroglycan could be agrin receptor and perhaps thus con-
tributes to its stabilization in basal lamina (Bowe et al., 1994; Gee
etal., 1994; Hara et al., 2011; Tintignac et al., 2015). Mutations in
DGC components cause muscular dystrophies; SGa mutations
have been identified in various muscular dystrophies including
the limb-girdle type 2D (Carrié et al., 1997; Fanin et al., 1997;
Murphy and Straub, 2015). NM]J function or morphology in pa-
tients with SGa mutations have not been characterized; however,
SG proteins are reduced in patients with dystrophin mutations
(Mizuno et al., 1994a,b). In these patients, NM]Js are fragmented
with reduced density and discontinuous nerve terminal (Ther-
oux et al., 2008; Pratt et al., 2018). In agreement, similar NMJ
deficits are displayed in mice lacking dystrophin, a-dystrobrevin
or a-syntrophin (Torres and Duchen, 1987; Lyons and Slater,
1991; Tinsley et al., 1996; Deconinck et al., 1997; Grady et al.,
2003).

mRNA levels of Lrp4 and Musk were increased in muscles of
aged mice (Ibebunjo et al., 2013; Fig. 6), perhaps as a compensa-
tory mechanism. This however is not sufficient to maintain the
normal level of LRP4 (Fig. 1), suggesting an imbalance between
LRP4 synthesis and degradation. Our studies show that LRP4 in
muscle cells is degraded mainly via proteasome pathways (Fig.
6B-E). In aged mice, ubiquitinated LRP4 was increased (Fig.
6D, E), suggesting increased degradation at protein level. SGa
have been implicated in the stability of multiple proteins and
protein complexes such as nNOS, SG, SGy, SG§, and sarcospan.
For example, loss of SGa reduces nNOS stability presumably by
causing its dissociation from the plasma membrane (Crosbie et
al., 2002). Without SGa, the formation of the sarcoglycan com-
plex and its colocalization with sarcospan and dystroglycans be-
came problematic, leading to loss of these proteins in sarcolemma
(Duclos et al., 1998; Crosbie et al., 1999; Gastaldello et al., 2008).
The mechanisms by which SGa regulates the stability of LRP4
remain unclear. LRP4 is a transmembrane protein, and thus its
membrane association does not require SGa. Interestingly, the
level of MuSK, another transmembrane protein that interacts
with LRP4 in the presence of agrin, is not reduced in aged mus-
cles, suggesting that the SGa regulation may be specific. Together
our results support a model where LRP4 stability requires SGa in
aged muscles and provide insight into molecular mechanism of
NM]J decline in aged mice. In support of this model are observa-
tions (1) that SGa and LRP4 interact in muscles (Fig. 7B), (2) that
SGais reduced at both mRNA and protein levels in aged muscles
(Fig. 7C,D), and (3) that increasing SGa levels promotes LRP4
stability (Fig. 8E—G) and viral expression of SGa diminished NMJ
deficits in aged mice (Figs. 9, 10). We speculate that SGa pro-
motes LRP4 stability by linking it to actin cytoskeleton via
a-dystrobrevin and dystrophin (Campbell and Kahl, 1989;
Ohlendieck et al., 1991a,b; Corrado et al., 1994; Yoshida et al.,
1994; Grady et al., 1999).
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