
Neuron

Article
HSP90b Regulates Rapsyn Turnover and Subsequent
AChR Cluster Formation and Maintenance
Shiwen Luo,1 Bin Zhang,1 Xian-ping Dong,1 Yanmei Tao,1 Annie Ting,1 Zheng Zhou,1 James Meixiong,1 Junjie Luo,1

F.C. Alex Chiu,1 Wen C. Xiong,1 and Lin Mei1,*
1Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia,

Augusta, GA 30912, USA
*Correspondence: lmei@mcg.edu

DOI 10.1016/j.neuron.2008.08.013
SUMMARY

Rapsyn, an acetylcholine receptor (AChR)-interact-
ing protein, is essential for synapse formation at the
neuromuscular junction (NMJ). Like many synaptic
proteins, rapsyn turns over rapidly at synapses.
However, little is known about molecular mecha-
nisms that govern rapsyn stability. Using a differential
mass-spectrometry approach, we identified heat-
shock protein 90b (HSP90b) as a component in sur-
face AChR clusters. The HSP90b-AChR interaction
required rapsyn and was stimulated by agrin. Inhibi-
tion of HSP90b activity or expression, or disruption of
its interaction with rapsyn attenuated agrin-induced
formation of AChR clusters in vitro and impaired
the development and maintenance of the NMJ
in vivo. Finally, we showed that HSP90b was
necessary for rapsyn stabilization and regulated its
proteasome-dependent degradation. Together,
these results indicate a role of HSP90b in NMJ
development by regulating rapsyn turnover and sub-
sequent AChR cluster formation and maintenance.

INTRODUCTION

Synapses are fundamental units for efficient communication be-

tween neurons and their target cells. Despite significant progress

in understanding the structure of matured synapses, less is

known about the mechanisms by which neurotransmitter recep-

tors are targeted to and anchored at postsynaptic regions

(Sanes and Lichtman, 2001; Waites et al., 2005). Increasing evi-

dence suggests that they are mobile, and exchanges occur con-

tinually between synaptic and extrasynaptic pools (Akaaboune

et al., 1999). This process is regulated by proteins that interact

directly with the receptors or indirectly via adaptor proteins. Sev-

eral such proteins have been identified, including transmem-

brane AMPAR regulatory proteins (TARPs) for AMPA receptors,

PSD-95 for NMDA receptors, homer for mGlu receptors, and ge-

phyrin for GABA receptors (Collingridge et al., 2004; Elias et al.,

2006; Waites et al., 2005). Due to easy accessibility and periph-

eral location, the neuromuscular junction (NMJ) has served as an

informative model for synaptogenesis (Sanes and Lichtman,

2001). Synaptic concentration of AChRs is generated by com-
plex interactions between motoneuron terminals and skeletal

muscles, resulting in AChR aggregation and local synthesis (Fu

et al., 2008; Li et al., 2008; Sanes and Lichtman, 2001; Schaeffer

et al., 2001). Neural agrin clusters AChRs via activating the trans-

membrane tyrosine kinase MuSK (DeChiara et al., 1996; Gautam

et al., 1996; Glass et al., 1996; Herbst and Burden, 2000; McMa-

han et al., 1992; Zhou et al., 1999), whereas ACh is thought to

disassemble receptor clusters in nonsynaptic areas via activat-

ing muscle fibers (Brandon et al., 2003; Lin et al., 2005; Misgeld

et al., 2002). MuSK is also critically involved in the prepatterning

of muscles because aneural AChR-rich sites are absent in MuSK

knockout mice (Kim and Burden, 2008; Lin et al., 2001). The in-

tracellular pathway downstream of MuSK remains unclear. It is

thought to involve the adaptor protein Dok-7 (Okada et al.,

2006) and several enzymes, including Src-family kinase (Ferns

et al., 1996; Mittaud et al., 2001; Mohamed et al., 2001; Qu

and Huganir, 1994; Wallace, 1991), Abl (Finn et al., 2003), gera-

nylgeranyl transferase I (GGT) (Luo et al., 2003), GTPases of the

Rho family (Weston et al., 2000, 2003), and Pak1, a serine/thre-

onine kinase that is activated by Rho GTPases (Luo et al., 2002).

Rapsyn is a key cytoplasmic protein in concentrating AChRs at

the NMJ (Sanes and Lichtman, 2001). Rapsyn�/� mice lack dif-

ferentiated NMJs and fail to form AChR clusters (Gautam et al.,

1995). Rapsyn interacts with the AChR, which is increased by

agrin and correlates with cytoskeletal linkage of the AChR (Mor-

ansard et al., 2003). Recent evidence suggests that rapsyn reg-

ulates AChR clustering by inhibiting the activation of Cdk5 (Chen

et al., 2007) and by associating with the b-catenin/a-catenin

complex (Zhang et al., 2007). Interestingly, rapsyn turns over

rapidly, with a half-life of one to several hours in muscle cells

(Bruneau and Akaaboune, 2007; Frail et al., 1989). How the sta-

bility of rapsyn is regulated and contributes to AChR clustering

and NMJ formation remains unclear.

To study the mechanisms of AChR clustering, we sought to

identify proteins that became associated with aggregated sur-

face AChRs in intact muscle cells using a differential proteomic

approach. We identified HSP90b, a molecular chaperone impli-

cated in stability and function of client proteins (Pearl and Pro-

dromou, 2006). Its association with surface AChRs was via direct

interaction with rapsyn and was increased by agrin. We explored

the consequences of inhibiting HSP90b activity or expression

and of disrupting its interaction with rapsyn. Results of these

experiments indicate a role of HSP90b in NMJ development by

regulating rapsyn turnover and subsequent AChR cluster forma-

tion and maintenance.
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RESULTS

Identification of HSP90b in the Complex of Surface
AChR Clusters
To understand the mechanisms of AChR clustering, we attemp-

ted to identify proteins that are preferentially associated with

aggregated versus diffused AChRs. Live, intact C2C12 muscle

cells were incubated with biotin-conjugated a-bungarotoxin

(aBTX) to label surface AChR following treatment with or with-

out agrin. Receptor-associated proteins were purified by

Figure 1. Agrin-Regulated Association of

HSP90b with Surface AChRs

(A) Identification of HSP90b as a protein associ-

ated with surface-aggregated AChRs. C2C12 my-

otubes were stimulated without or with agrin for

18 hr. Live myotubes were incubated with

300 nM biotin-aBTX for 2 hr at 4�C to label surface

AChR. The AChR complex was purified by strepta-

vidin-coupled agarose beads, resolved by SDS-

PAGE and coomassie brilliant blue staining. Dis-

tinct bands increased by agrin were subjected to

mass spectrometry, which yielded peptide se-

quences that matched HSP90b and rapsyn.

(B) Immunoblot of AChR-associated proteins by

antibodies against HSP90b and rapsyn. AChRa

subunit was also blotted to indicate equal

amounts.

(C) Time-dependent specific association of

HSP90b with surface AChRs. C2C12 myotubes

were treated with agrin for different times. Proteins

associated with surface AChRs and in lysates

were analyzed by immunoblotting with indicated

antibodies.

(D) Quantitative analysis of the amounts of

HSP90b and rapsyn associated with surface

AChRs in (C). Data were shown as mean ± SEM;

n = 5; ## and **, p < 0.01.

(E) Increased coprecipitation of AChRs and

HSP90b in agrin-stimulated myotubes. C2C12

myotubes were stimulated without or with agrin

for 12 hr and lysed. Lysates were subjected to im-

munoprecipitation with anti-HSP90b antibody.

Precipitated proteins were probed with indicated

antibodies.

(F and G) Enrichment of HSP90b at adult and

developing NMJs. Muscle sections of adult mouse

tibialis anterior muscles (F) and diaphragms of

indicated ages (G) were costained with R-BTX

(red), which binds postsynaptic AChRs, and

antibody against HSP90b (green, Alexa Fluor

488). In some experiments in (F), the antibody

was incubated with the antigen. Arrows indicate

colocalization. Scale bar, 20 mm in (F), 10 mm in

(G). PD, pull down; IB, immunoblotting; M, protein

marker.

streptavidin-coupled agarose beads, re-

solved by SDS-PAGE, and identified by

mass spectrometry. This led to the iden-

tification of several proteins, including

HSP90b and rapsyn, a protein known

to interact with AChR upon agrin stimulation (Figures 1A and

1B) (Moransard et al., 2003). HSP90b is a chaperone ATPase

of the HSP90 family implicated in protein maturation and target-

ing. Expression of HSP90b is not inducible with stress, unlike

HSP90a, whose level increases in cells under stress. HSP90a

was not detectable in surface AChR complexes regardless of

agrin stimulation (Figure 1C), demonstrating the specificity of

the interaction between HSP90b and surface-aggregated

AChR. Moreover, the HSP90b association was time dependent,

peaking (�8-fold above basal) around 12 hr after agrin
98 Neuron 60, 97–110, October 9, 2008 ª2008 Elsevier Inc.
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stimulation (Figures 1C and 1D), a time when induced AChR

clusters are detectable. Note that levels of HSP90b and surface

AChR remained unchanged under these conditions (Figure 1C).

In agreement, the amount of AChR was increased in HSP90b

precipitates in reciprocal experiments (Figure 1E). HSP90b im-

munoreactivity showed a pattern similar to that of rhodamine-

conjugated aBTX (R-BTX) staining in developing and adult

muscles (Figures 1F and 1G), but not in spontaneous clusters

in cultured myotubes (Figure S1B available online), suggesting

that HSP90b is enriched at the NMJ. These observations reveal

that HSP90b associates with surface AChRs upon agrin stimu-

lation. HSP70 also associated with surface AChRs. However,

this association did not appear to be regulated by agrin

(Figure 1C).

HSP90b Associates with AChR via Rapsyn
Next, we examined whether rapsyn associates with HSP90b in

a manner dependent upon agrin stimulation. Immunoprecipita-

tion with an anti-rapsyn antibody (Figure S2) brought down

HSP90b, and the coprecipitation was increased in agrin-stimu-

lated cells (Figures 2A and 2B). In reciprocal experiments,

more rapsyn coprecipitated with HSP90b upon agrin stimulation

(Figure 2C). Moreover, the rapsyn-HSP90b association was de-

tectable in mouse muscle homogenates (Figure 2D), suggesting

in vivo interaction of the two proteins. Intriguingly, rapsyn could

also interact with HSP70 in an agrin-independent manner (Fig-

ures 2A and 2C). In domain mapping experiments, GST-rapsyn

was able to pull down wild-type and truncation mutant

HSP90b1-620 (Figure 2E), suggesting that the C-terminal region

Figure 2. Interaction of Rapsyn with

HSP90b in Cultured Cells and Muscle Tissue

(A) Increased rapsyn-HSP90b interaction in agrin-

stimulated myotubes. Myotubes were stimulated

with agrin for 12 hr and resulting lysates were sub-

jected to immunoprecipitation of rapsyn. Precipi-

tated proteins were probed using indicated

antibodies.

(B) Quantitative analysis of the amounts of

HSP90b associated with rapsyn in (A). Data were

shown as mean ± SEM; n = 5; **p < 0.01.

(C) Coprecipitation experiments were done as in

(A) except anti-HSP90b and HSP70 antibodies

were used in immunoprecipitation. Precipitated

proteins were probed using indicated antibodies.

(D) Interaction of HSP90b with rapsyn in mouse

muscles. Mouse muscle homogenates were incu-

bated with anti-rapsyn antibody or rabbit normal

IgG. Precipitates were probed for HSP90b. Ho-

mogenates were also probed for HSP90b and rap-

syn (bottom panels).

(E) Identification of HSP90b domains for rapsyn in-

teraction. Bacterial GST-rapsyn, immobilized on

glutathione-Sepharose 4B beads, was incubated

with lysates from HEK293 cells expressing Flag-

HSP90b constructs in (E). Precipitated proteins

(PD) and input lysates were immunoblotted (IB)

with anti-Flag antibody.

(F) HSP90b constructs and rapsyn binding activity.

(G) Direct interaction between HSP90b and rap-

syn. [35S]-labeled rapsyn protein was generated

by in vitro translation (middle panel) and incubated

with bacterial GST or GST fusion proteins contain-

ing HSP90b (440–620 or 621–724), which were im-

mobilized on glutathione-Sepharose 4B beads

(bottom panel, *). Bead-associated [35S]-rapsyn

was resolved by SDS-PAGE and visualized by au-

toradiogram (top panel).

(H) Rapsyn-dependent association of HSP90b to

surface AChRs. Control and rapsyn deficient

(R�/�) myotubes were stimulated without or with

agrin for 12 hr. The surface AChR complex was

purified as in Figure 1 and probed with indicated

antibodies.

(I) Colocalization of HSP90b and rapsyn in C2C12

myotubes. C2C12 myotubes were treated with or

without agrin for 12 hr. The samples were fixed

and costained with antibodies against HSP90b (Alexa Fluor 594, red) and rapsyn (Alexa Fluor 488, green). Images were acquired by using a Zeiss confocal mi-

croscope. Arrow indicates colocalization. Scale bar, 20 mm.
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could be dispensable for the interaction. Deletion of aa 440–620,

however, prevented HSP90b from interacting with rapsyn, sug-

gesting the necessity of this region (Figures 2E and 2F). More-

over, a GST fusion protein containing aa 440–620 was able to in-

teract with [35S]-labeled rapsyn generated by in vitro translation

(Figure 2G), suggesting that aa 440–620 is sufficient for interac-

tion. This result also demonstrated that the interaction between

HSP90b and rapsyn is direct. Rapsyn has three domains: TPR

domains for self-association, a coiled-coil domain for interaction

with AChR, and a Ring domain for interaction with b-dystrogly-

can (Bartoli et al., 2001). The TPR domains appeared to be nec-

essary and sufficient for interaction with HSP90b (Figure S3).

Direct interaction between HSP90b and rapsyn could suggest

that HSP90b may associate indirectly with surface AChRs, i.e.,

via rapsyn. This hypothesis predicts that AChR is not associated

with HSP90b in the absence of rapsyn. To test this, we used mus-

cle cells derived from rapsyn mutant mice (clone 11-7) that are

deficient in rapsyn and do not form AChR clusters in response

to agrin (Apel et al., 1997; Fuhrer et al., 1999). As shown in

Figure 2H, rapsyn as well as HSP90b became associated with

surface AChRs in agrin-stimulated control muscle cells (clone

12-10) derived from heterozygous littermates. In contrast, how-

ever, HSP90b was barely detectable in surface AChRs in

rapsyn�/�myotubes (Figure 2H). Similarly, AChR was not detect-

able in precipitates of HSP90b in rapsyn�/� cells (Figure S4). Note

that levels of HSP90b and AChR were similar between control and

rapsyn�/� myotubes. These results demonstrate the depen-

dence of the HSP90b-AChR association on rapsyn and that

agrin stimulates the interaction between rapsyn and HSP90b. In

support of this, HSP90b and rapsyn were colocalized in

agrin-stimulated C2C12 myotubes (Figure 2I) and the developing

NMJ (Figure S1A).

Inhibition of HSP90b Attenuates AChR Cluster
Formation In Vitro and In Vivo
To investigate the function of HSP90b in AChR clustering, muscle

cells were treated with 17-(allylamino)-17-demethoxygeldanamy-

cin (17-AAG), an inhibitor of HSP90 (Sharp and Workman, 2006). It

inhibits the ATPaseactivity bybinding to the N-terminal region and

thus alters the conformation of HSP90b and the chaperone com-

plex (Stebbins et al., 1997). 17-AAG (5 mM, 12 hr) had no apparent

effect on myotube viability or morphology of C2C12 myotubes

(data not shown). However, it inhibited agrin-induced formation

of AChR clusters in a dose-dependent manner (Figure 3A) without

altering the levels of surface AChR (Figure 3B), MuSK, or its acti-

vation by agrin or c-Abl, Rac, or Cdc42 (Figures 3C and 3D). A sim-

ilar inhibitory effect was observed in myotubes pretreated with 17-

AAG (Figure S5). Intriguingly, 17-AAG (0.1 mM, 12 hr) dramatically

reduced the amount of rapsyn associated with surface AChRs

without significant changes of that in lysates, while at increased

concentrations the amount of rapsyn in lysates was reduced (Fig-

ures 3B and 3E). These results suggest a role for HSP90b in pro-

moting rapsyn stability (see below). Concomitantly, the amount

of HSP90b in the AChR complex, but not in lysates, was reduced

(Figure 3B). These results suggest that inhibition of HSP90b atten-

uates its interaction with rapsyn and thus reduces the latter’s sta-

bility, and subsequently, AChR cluster formation is compromised.

Consistent with this model, the stability of AChR clusters in
100 Neuron 60, 97–110, October 9, 2008 ª2008 Elsevier Inc.
17-AAG-treatedmusclecellswas reduced,witha half-lifeof about

4 hr in comparison with that of 7–12 hr in control cells (Figure 3F)

(Camilleri et al., 2007; Kim and Nelson, 2000; Wallace, 1988;

Zhu et al., 2006). Time-lapse imaging indicated that 17-AAG treat-

ment increased the rate of disappearance of AChR aggregates

(Figure S6). Thus, HSP90b may regulate both the formation and

maintenance of AChR clusters.

We determined the role of HSP90b in NMJ formation in vivo by

injecting 17-AAG intraperitoneally into embryos in utero at E14.5,

a time when the NMJ starts to form (Lin et al., 2001; Zhu et al.,

2006). Diaphragms were whole-mount stained with antibodies

against synaptophysin and neurofilament to label phrenic nerve

branches and terminals and with R-BTX to label the AChR. As

shown in Figure 4, 17-AAG decreased the number and size of

AChR clusters (Figures 4A and 4A0) and reduced rapsyn immu-

noreactivity (Figure 4B), consistent with the notion that

HSP90b regulates rapsyn stability and thus AChR cluster forma-

tion in vivo. Phrenic nerve branches and terminals were appar-

ently similar in control and 17-AAG-treated muscles

(Figure 4A). Due to the decrease in AChR clusters, numerous

nerve terminals did not costain with R-BTX (arrow, Figure 4A0),

unlike control diaphragms where almost all terminals were asso-

ciated with AChR clusters (arrowhead, Figure 4A0). Note that

17-AAG injection reduced rapsyn levels in muscles (mostly in

the synaptic region, Figures S7A and S7B) but had no apparent

effect on the morphology of muscles, thickness of diaphragms,

or size of muscle fibers (Figure S8A). No effect was observed

on the morphology or number of motoneurons (Figure S8B) or

distribution of ACh esterase (AChE), an enzyme enriched in the

synaptic cleft of the NMJ (Figure S8C). These results suggest

a role of HSP90b in NMJ formation. To determine whether it is

also involved in NMJ maintenance, 17-AAG was injected intra-

peritoneally into P7, P14, and P30 mice, which reduced rapsyn

in muscles (Figure S9A) but had no apparent effect on muscle fi-

ber morphology or size (Figure S9B). Unlike NMJs in control mice

that appeared like ‘‘pretzels’’ (Figure 4C), AChR clusters in 17-

AAG-treated mice were disrupted. Quantitatively, the number

of uninterrupted AChR cluster fragments was increased,

whereas the area of each fragment, area of each NMJ, and inten-

sity of AChR clusters were reduced in muscles of 17-AAG-

treated mice (Figure 4D). The effect was age dependent, more

severe in P7 mice. Consistent with biochemical and morpholog-

ical deficits, 17-AAG-injected P7 and P14 mice showed a reduc-

tion in step length (Figure S10). These data indicate a role of

HSP90b in AChR cluster maintenance. Together with observa-

tions that HSP90b inhibition attenuates AChR clustering in cul-

tured muscle cells, these observations provide evidence for

a role of HSP90b in postsynaptic differentiation at the NMJ.

Repression of HSP90b Expression Inhibits AChR
Clustering
To investigate specifically the role of HSP90b, we generated

HSP90b miRNA constructs that inhibited HSP90b expression,

among which 90b-1205 and 90b-1626 were most effective

(Figure 5A). By contrast, HSP90b expression was not affected

by a vector that encodes random sequences (control) or LacZ-

miRNA. HSP90b-miRNA constructs were introduced into

C2C12 myotubes to avoid possible interference with muscle
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differentiation. Agrin-induced AChR clusters were analyzed in

myotubes labeled by GFP, which was encoded by the miRNA

vector. As shown in Figure 5C, AChR clustering was markedly at-

tenuated in myotubes transfected with 90b-1205 and 90b-1626,

in comparison with control. This effect was specific, as AChR

clusters were not affected by 90a-2172 that suppressed

HSP90a expression (Figures 5B and 5C). These results corrobo-

rate those from studies with the HSP90 inhibitor 17-AAG and

demonstrate a role of HSP90b, not HSP90a, in agrin-induced

AChR cluster formation in living myotubes.

To repress HSP90b expression in vivo, 90b-1205 DNA was de-

livered to tibialis anterior muscles of P14 mice by injection and

subsequent electroporation, which enabled 67% muscle fibers

to express GFP (Figure S11). As shown in Figure 5D, 90b-1205

specifically repressed in vivo expression of HSP90b that was as-

sociated with decreased levels of rapsyn 2 weeks after electro-

poration. AChR clusters were examined in teased individual

muscle fibers that express GFP. To ensure that AChRs under

Figure 3. 17-AAG Reduced AChR Cluster

Formation and Maintenance in C2C12 Mus-

cle Cells

(A) Inhibition of agrin-induced AChR cluster forma-

tion by 17-AAG. C2C12 myotubes were treated

without or with agrin in the presence of the vehicle

DMSO or 17-AAG at different concentrations.

AChR clusters were assayed 12 hr later. Histo-

grams show mean ± SEM; n = 20 in each group;

*p < 0.05, **p < 0.01. Scale bar, 20 mm.

(B) Reduced HSP90b association to surface

AChRs in 17-AAG-treated muscle cells. The

AChR complex was purified as in Figure 1 from

control and treated C2C12 myotubes and probed

for rapsyn, HSP90b, and AChR. Lysate input was

also probed for the indicated proteins.

(C and D) No effect of 17-AAG on MuSK expres-

sion or activation by agrin (C) or expression of

c-Abl, Rac, or Cdc42 (D). C2C12 myotubes were

treated with or without 5 mM 17-AAG for 1 hr in

(C) and for 12 hr in (D). MuSK was immunoprecip-

itated and probed for phospho-tyrosine using

4G10 antibody (C). Lysates were also probed for

the indicated proteins (C and D).

(E) Time-dependent reduction of rapsyn in lysates

of 17-AAG (5 mM) treated muscle cells.

(F) Decreased stability of AChR clusters in myo-

tubes treated with 17-AAG. C2C12 myotubes

were stimulated with agrin for 12 hr to induce

AChR clusters. Cells were washed and switched

to a medium without agrin in the presence or

absence of 5 mM 17-AAG for indicated times. His-

tograms show mean ± SEM; n = 10 per group;

**p < 0.01. Scale bar, 20 mm.

examination were formed in muscle fi-

bers that expressed 90b-1205, we recon-

structed 3D images of injected muscle

fibers. Only clusters on GFP-expressing

fibers, as indicated by lateral view of re-

constructed 3D images (Figure 5E),

were subjected to analysis and quantifi-

cation. In comparison with control muscles, 90b-1205 disrupted

AChR clusters in vivo. AChR clusters became fragmented, with

reduced areas of individual fragments and of individual NMJs

in 90b-1205-treated muscles (Figures 5E and 5F). The intensity

of AChR clusters was also reduced (Figure 5F). Although 90a-

2172 reduced levels of HSP90a in electroporated muscles, it

had no detectable effect on rapsyn levels or in vivo AChR cluster-

ing (Figures 5D–5F). These data indicate that HSP90b, not

HSP90a, is involved in AChR cluster maintenance.

Inhibition of AChR Clustering by an HSP90b Mutant
Next, we used a dominant-negative approach to investigate

whether AChR clusters require the interaction of HSP90b and

rapsyn. We reasoned that HSP90b1-620, a fragment that con-

tains the domain for rapsyn interaction, may prevent endoge-

nous rapsyn from interacting with HSP90b. As shown in

Figure 6A, expression of Flag-HSP90b1-620 reduced levels of

rapsyn in transfected muscle cells, presumably by disrupting
Neuron 60, 97–110, October 9, 2008 ª2008 Elsevier Inc. 101
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the interaction between rapsyn and endogenous HSP90b. Re-

markably, it inhibited agrin-induced AChR clusters in a manner

that required the 440-620 domain that interacts with rapsyn.

HSP90b constructs harboring this domain (1-620 and D233-

439), but not those without this domain (1-232, 1-439, D440-

620, and D233-620), were able to inhibit AChR clustering

(Figure 6B). These results indicate that the HSP90b-rapsyn inter-

action may be involved in AChR cluster formation in muscle cells.

To disrupt the interaction in vivo, HSP90b1-620 was subcl-

oned into pIRES2-EGFP to generate pIRES2-(1-620) that ex-

presses EGFP and HSP90b1-620 as two individual proteins

(Figure 6C). As shown in Figure 6E, HSP90b1-620 expression re-

duced rapsyn levels in injected muscles by 40%. AChR clusters

were disrupted in HSP90b(1-620)-expressing muscle fibers, but

not those expressing EGFP alone (Figure 6D). The number of

AChR-positive fragments per NMJ was increased with reduced

Figure 4. Inhibition of HSP90b Impaired

NMJ Formation In Vivo

(A, A0, and B) Mouse embryos (E14.5) in uterus

were injected intraperitoneally with 17-AAG (10 ml,

0.5 mM in 10% DMSO) or DMSO (control) daily for

2 days. Diaphragms were dissected at E17.5 and

stained whole-mount with R-BTX and antibodies

against neurofilament (NF) and synaptophysin

(Syn) (A and A0 ) or rapsyn (B). Collapsed images

of diaphragms were captured by a Zeiss confocal

laser-scanning microscope. AChR clusters were

traced around the perimeters to calculate the

area using LSM 5 Image Examiner software

(Zeiss). Histograms in (A and A0) show mean ±

SEM, n = 6–10 mice for each treatment; **p <

0.01. Arrowhead indicates clusters with both pre-

and postsynaptic markers. Arrow indicates a clus-

ter stained for presynaptic markers, but not R-

BTX. Histograms in (B) were results of analysis of

digitized images using NIH Image 1.63. The

mean pixel value (mpv) of each cluster was used

to calculate the fluorescence intensity, with back-

ground subtracted. Data were shown as mean ±

SEM; n = at least 6 mice for each treatment; **p

< 0.01.

(C) Mice were injected intraperitoneally at P7, P14,

and P30 with 50 ml of 17-AAG (2.5 mg/kg) or

DMSO (control) three times a week on alternate

days for 2 weeks. AChR clusters were visualized

in single teased fibers of tibialis anterior muscles,

and Z serial images were collected and collapsed

into a single image.

(D) Quantitative analysis of the numbers of R-BTX-

positive fragments, areas occupied by individual

fragments, areas occupied by individual NMJs,

and cluster intensity. Data shown were mean ±

SEM, n = 30 AChR clusters of 6 mice of each group

(**p < 0.01).

surface areas of each fragment and indi-

vidual NMJ. These results, in good agree-

ment with studies of AChR clusters in cul-

tured myotubes (Figure 6B), indicate that

disruption of the rapsyn-HPS90b interac-

tion attenuates AChR clustering in vivo.

Together with in vivo miRNA experiments, they provide strong

evidence for an in vivo role of HSP90b in AChR clustering and

NMJ formation.

HSP90b Stabilizes Rapsyn and Regulates
Proteasome-Dependent Degradation
Rapsyn is a dynamic protein in the AChR complex with a half-life

of one to several hours (Bruneau and Akaaboune, 2007; Frail

et al., 1989). The direct interaction between rapsyn and

HSP90b may therefore regulate rapsyn stability. To test this hy-

pothesis, we examined effects of 17-AAG on rapsyn stability in

C2C12 myotubes in the presence of cycloheximide (CHX) to in-

hibit translation. As shown in Figure 7A, 17-AAG (5 mM) treatment

promoted rapsyn degradation. The half-life of rapsyn decreased

by 60% in treated muscle cells (6.1 ± 0.35 hr and 2.4 ± 0.15 hr in

control and 17-AAG treated cells, respectively, p < 0.001, n = 7).
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The reduction in rapsyn half-life could be attenuated by agrin

(Figure 7A), which stimulates the HSP90b-rapsyn interaction

(Figures 2A and 2C). 17-AAG at the same concentrations was

able to disrupt the HSP90b-rapsyn interaction in a time-depen-

dent manner. The interaction was reduced within 20 min of and

almost abolished 60 min after 17-AAG treatment (Figure 7B).

Note that the effect of 17-AAG on rapsyn levels in lysates was

also time dependent. 17-AAG (5 mM) had little effect on rapsyn

levels within 60 min of treatment (Figure 7B), but reduced them

significantly 12 hr after (Figures 3B and 3E). These results sug-

gest that rapsyn stability was enhanced by interaction with

HSP90b. This notion was supported by further studies with

HSP90b-miRNA that reduced rapsyn in transfected cells

(Figure 7C). Moreover, expression of HSP90b1-620, a deletion

mutant that disrupts the HSP90b-rapsyn interaction, reduced

rapsyn levels in a dose-dependent manner (Figure 6A).

Degradation of HSP90 client proteins is thought to be medi-

ated by the 26S proteasome. As such, we investigated whether

this system is involved in regulating rapsyn stability. Muscle cells

were treated with MG-132, an inhibitor of the 26S proteasome,

and rapsyn stability in control and 17-AAG-treated cells was

characterized. As shown in Figure 7D, 17-AAG-induced degra-

dation of rapsyn was attenuated by MG-132, but not by lyso-

somal protease inhibitors chloroquine or monensin. These re-

sults suggest that rapsyn undergoes degradation by 26S

proteasomes. Consistent with this observation, MG-132 was

able to attenuate the inhibitory effect of 17-AAG on AChR cluster

formation (Figure 7E). Moreover, overexpression of rapsyn was

able to attenuate the inhibitory effect of 17-AAG on AChR clus-

ters (Figure 7F), suggesting the regulation of rapsyn levels could

be a mechanism of action of HSP90b. Together, these results in-

dicate that HSP90b was a synaptic chaperone that regulates the

Figure 5. Repression of HSP90b, but Not

HSP90a, Expression Impaired Agrin-In-

duced AChR Clustering In Vitro and In Vivo

(A and B) Inhibition of HSP90b and HSP90a ex-

pression by respective miRNA constructs.

HEK293 cells were transfected with Flag-HSP90b

(A) or Myc-HSP90a (B) along with indicated miRNA

constructs of HSP90b (A) or HSP90a (B). The con-

trol miRNA encodes scrambled sequences,

whereas LacZ encodes miRNA for LacZ. Thirty-

six hours after transfection, cell lysates were im-

munoblotted with antibodies against Flag (A),

Myc (B), or b-actin (A and B) for loading control.

(C) Agrin-induced AChR clusters were reduced in

myotubes expressing 90b-1205 or 90b-1626, but

not 90a-2172. Young C2C12 myotubes were

transfected with the control vector (scrambled)

and indicated miRNA constructs and stimulated

with agrin 24 hr later for 12 hr. AChR clusters

were examined in myotubes expressing GFP

that was encoded by the miRNA parental vector.

Right panel shows quantitative analysis (mean ±

SEM, n = 20 each group; **p < 0.01).

(D) Decreased rapsyn levels in 90b-1205-express-

ing, but not 90a-2172-expressing, muscles. Indi-

cated miRNA or control (scrambled) constructs

were injected into tibialis anterior muscles of P14

mice. The injected muscles were subjected to elec-

troporation. Fourteen days later, tibialis anterior

muscles were homogenized and analyzed by im-

munoblotting with the indicated antibodies. Shown

were representative blots and histograms of quan-

titative analysis (mean ± SEM, n = 5; **p < 0.01).

(E) Fragmentation of AChR clusters in 90b-1205-

expressing muscle fibers. miRNA or control con-

structs were injected as described in (D) into tibialis

anterior muscles of P14 mice. AChR clusters were

examined 2 weeks later in teased individual muscle

fibers that express EGFP alone or EGFP and re-

spective miRNA constructs. AChR clusters were

visualized in single teased fibers, and Z serial im-

ages were collected and collapsed into a single

image. Lateral view of the reconstructed 3D im-

ages was shown on the right.

(F) Quantitative analysis of data in (E). Data shown

were mean ± SEM, n = 30 AChR clusters of 6 mice

of each group (**p < 0.01). Scale bar, 10 mm.
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stability of rapsyn and subsequently AChR clustering and NMJ

formation.

DISCUSSION

Utilizing a proteomic approach, we identified HSP90b as a pro-

tein that becomes associated with surface AChR in agrin-stimu-

lated muscle cells. We demonstrate that HSP90b does not inter-

act with the AChR directly; instead, via direct interaction with

rapsyn, HSP90b becomes associated with clustered AChR.

Consistently, HSP90b is enriched at the NMJ and in AChR clus-

ters in muscle cells. We show that HSP90b regulates AChR clus-

tering. First, treatment of muscle cells with 17-AAG, an HSP90

inhibitor that disrupts the AChR-HSP90b complex, attenuated

agrin-induced AChR clustering. 17-AAG also reduced the stabil-

ity of AChR clusters. Second, suppression of HSP90b expres-

Figure 6. Expression of a HSP90b Mutant

Inhibited AChR Clustering

(A) Rapsyn levels were reduced in muscle cells ex-

pressing the HSP90b mutant 1-620. C2C12 myo-

tubes were transfected without or with two doses

of Flag(1-620). Thirty-six hours after transfection,

cells were lysed and resulting lysates were blotted

with indicated antibodies.

(B) Inhibition of agrin-induced AChR clustering by

HSP90b mutants. C2C12 myotubes were trans-

fected with Flag-HSP90b constructs. Thirty-six

hours after transfection, AChR clusters were as-

sayed in Flag-positive myotubes. Data are shown

as mean ± SEM, n = 20 each group; **p < 0.01.

(C) Schematic diagram of the pIRES2-HSP90b1-

620.

(D) Fragmentation of AChR clusters in HSP90b1-

620-expressing muscle fibers. pIRES2-Flag(1-

620) or the parental vector was injected into tibialis

anterior muscles of P14 mice. The injected mus-

cles were subjected to electroporation. AChR

clusters were examined 2 weeks later in teased in-

dividual muscle fibers that express EGFP alone or

EGFP and HSP90b1-620. Lateral view of the re-

constructed 3D images was shown on the right.

Quantitative analysis of data was shown in the his-

tograms on the right (mean ± SEM, n = 23 for

EGFP [45 fragments] and n = 20 for HSP90b1-

620 [103 fragments] from 6 mice; **p < 0.01).

(E) Decreased rapsyn levels in HSP90b1-620-

expressing muscles. Muscles injected with

pIRES2-EGFP vector (control) or pIRES2-Flag(1-

620) were homogenized and analyzed for expres-

sion of indicated proteins. Quantification of data

was shown as mean ± SEM (n = 4; **p < 0.01).

sion inhibits agrin-induced AChR cluster-

ing in muscle cells. Third, disruption of

the HSP90b-rapsyn interaction by a dom-

inant-negative approach inhibits AChR

clustering. Mouse embryos injected with

17-AAG form fewer AChR clusters, sug-

gesting that HSP90b is involved in NMJ

formation in vivo. Finally, we provide evi-

dence that HSP90b regulates rapsyn stability. Rapsyn was re-

duced in muscle cells treated with 17-AAG, cells expressing

HSP90b-miRNA that suppress HSP90b expression, and cells

transfected with HSP90b1-620 that disrupts the interaction of

endogenous HSP90b and rapsyn. These results support a work-

ing model where agrin stimulates the interaction between

HSP90b and rapsyn and thus stabilizes rapsyn. When HSP90b

is inhibited or its expression suppressed, rapsyn becomes un-

stable and degraded possibly via the 26S proteasome system.

HSP90b was concentrated at the NMJ (Figures 1F and 1G) and

present in agrin-induced AChR clusters (Figure 3B). However, lit-

tle HSP90b was detectable in spontaneous AChR clusters

(Figure S1B), although its association with surface AChR and

rapsyn could be demonstrated in naive muscle cells in pull-

down and coimmunoprecipitation assays (Figures 1C and 2A).

These results could suggest that the amount of HSP90b
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Figure 7. Regulation of Rapsyn Stability by HSP90b

(A) Reduction of rapsyn in 17-AAG-treated muscle cells. C2C12 myotubes were treated with CHX (50 mg/ml) alone or together with 17-AAG (5 mM) for the indicated

times. Lysates were probed for rapsyn and b-actin (as control). Blots were scanned with an Epson scanner and analyzed by NIH Image software. Quantitative

analysis was shown in the graph on the right.

(B) 17-AAG disrupted the HSP90b-rapsyn interaction. C2C12 myotubes were treated with 17-AAG (5 mM) together with or without agrin for the indicated times.

The interaction was examined by coimmunoprecipitation as in Figure 2. Lysate inputs were probed with the indicated antibodies to show expression of interested

proteins.

(C) HSP90b depletion by miRNA facilitated rapsyn degradation. C2C12 myotubes were transfected with the control vector, LacZ-miRNA, or HSP90b miRNA con-

structs and lysed 36 hr later. Rapsyn in lysates was revealed by immunoblotting with indicated antibodies. Band density was quantified and shown in the histo-

grams. Data were shown as mean ± SEM; n = at least 5 for each data point; ** or ##, p < 0.01.

(D) Rapsyn reduction by 17-AAG was inhibited by MG-132, but not by lysosomal protease inhibitors. C2C12 myotubes were treated with vehicle (DMSO) or 17-

AAG (5 mM) for 8 hr, with or without 10 mM MG-132, 10 mM chloroquine, or 10 mM monensin. In order to decrease toxicity, MG-132, chloroquine or monensin was

added 4 hr before cell harvest. Lysates were subjected to immunoblotting with indicated antibodies. Quantitative analysis of results was shown in histograms

(mean ± SEM, n = 4; **p < 0.01).

(E) MG-132 attenuated 17-AAG-induced inhibition of AChR cluster formation. C2C12 myotubes were treated with agrin together with DMSO, 17-AAG (1 mM),

MG-132 (5 mM), or 17-AAG plus MG-132. AChR clusters were assayed as in Figure 3. Shown were mean ± SEM, n = 5; **p < 0.01.

(F) Overexpression of rapsyn attenuated the inhibitory effect of 17-AAG on AChR clusters. C2C12 myotubes were transfected with the empty vector or rapsyn-

HA. Thirty-six hours after transfection, cells were stimulated with agrin in the presence of DMSO or 5 mM 17-AAG. Lysates were probed with antibody against

rapsyn, the HA tag, or b-actin (left panel). AChR clusters were examined in HA-positive myotubes in parallel experiments (right panel). Data were shown as mean ±

SEM, n = 15 each group; **p < 0.01.
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Neuron

HSP90b in AChR Clustering
associated with spontaneous AChR clusters was at low levels

that could not be revealed by immunostaining. Nevertheless,

these results suggest that HSP90b regulates agrin-regulated

AChR clusters. This notion is supported by increased associa-

tion of HSP90b with clustered AChR (Figure 1C, 1E, and 3B).

HSP90b is a molecular chaperone that aids in the folding, as-

sembly-disassembly, and activation of a wide range of substrate

or client proteins (Pearl and Prodromou, 2006). Many proteins

are known to be enriched at the NMJ, including MuSK (DeChiara

et al., 1996; Sanes and Lichtman, 2001), and in particular, several

have been identified to associate with the AChR of adult rabbit

muscle cells or in cultured muscle cells, including APC, actin,

and a-actinin (Mitsui et al., 2000; Wang et al., 2003) (data not

shown). We show that HSP90b is recruited to the AChR complex

upon agrin stimulation via direct interaction with rapsyn. Inhibi-

tion of HSP90b function by 17-AAG or by a dominant-negative

mutant or suppression of HSP90b expression by miRNA reduces

static levels of rapsyn and its half-life in myotubes. Moreover,

rapsyn levels were reduced in muscles that expressed

HSP90b-miRNA or the dominant-negative mutant or in muscles

from mice that were injected with 17-AAG. These results suggest

that HSP90b stabilizes rapsyn and subsequently AChR cluster-

ing. Intriguingly, pretreatment of myotubes with 17-AAG also

inhibited agrin-induced formation of AChR clusters. This is prob-

ably because that the inhibition of HSP90b by 17-AAG is long-

lasting. A recent study indicates that 17-AAG accumulates in

cells and its intracellular concentration remains high even 72 hr

after treatment (Chiosis et al., 2003). Interestingly, agrin stimula-

tion did not have consistent effect on total levels of rapsyn in

muscle cells, which could suggest that HSP90b alone is not suf-

ficient for rapsyn folding or stabilization. In support of this notion

was that HSP90b overexpression had no consistent effect on

levels of rapsyn or its half-life (Figure S12). These observations

suggest the existence of additional mechanisms for rapsyn sta-

bilization. In addition to HSP90b, rapsyn also associates with

HSP70, another component of the HSP complex (Figures 2A

and 2C). HSP70 is known to participate to regulate protein fold-

ing and degradation (Bukau and Horwich, 1998; Hartl and Hayer-

Hartl, 2002). It is likely that HSP70 participates in rapsyn folding

and stabilization.

It is worth pointing out that phenotypes of in vivo HSP90b in-

hibition were not identical to those observed in rapsyn mutant

mice (Gautam et al., 1995). Postsynaptically, junctional AChR

clusters appeared fragmented, in addition to expected reduction

in AChR intensity, in muscles injected with 17-AAG or expressing

the dominant-negative mutant or HSP90b-miRNA (Figures 4C,

6D, and 5E). Furthermore, in vitro studies showed that some

AChR clusters disappeared whereas others reduced in intensity

in myotubes (Figure S6 time lapse). This binary effect and frag-

mentation of AChR clusters could suggest a regulatory role of

HSP90b in the stabilization of clusters or the NMJ, the underlying

mechanisms of which, however, warrant further investigation. It

is possible that HSP90b may regulate the function or stability

of other proteins in addition to rapsyn. Candidates on this list in-

clude a-dystrobrevin and a-syntrophin, which have been shown

to regulate the stabilization of AChR clusters (Adams et al., 2000;

Banks et al., 2003; Grady et al., 2000; Pawlikowski and Mai-

mone, 2008; Sadasivam et al., 2005). In rapsyn mutant mice, mo-
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tor axons grow excessively over the entire muscle with little pre-

synaptic differentiation (Gautam et al., 1995). However, nerve

branches in 17-AAG-treated animals appeared to be similar to

those in control mice (Figure 4A and 4A0). The lack of presynaptic

phenotypes may be due to the time of 17-AAG injection, i.e.,

E14.5, being after the formation of primitive AChR clusters (Lin

et al., 2001; Yang et al., 2001) and incomplete ablation of

AChR clusters. It is also possible that HSP90b inhibition reduces

axon mobility or suppresses expression of axon attractive mole-

cules or trophic factors in muscles.

HSP90b inhibition did not appear to alter the levels of MuSK

that is enriched in the postsynaptic membrane (Figures 3C and

3E). No consistent effect of HSP90b inhibition was observed

on expression of signaling molecules that have been implicated

in AChR clustering, including Abl, Rac, and Cdc42 (Figure 3D) or

myosin heavy chain (MHC), MyoD, or myogenin (Figure S7A).

These observations indicate the specificity of HSP90b-depen-

dent protein stability, suggesting the necessity of direct interac-

tion for HSP90b regulation. Rapsyn has been shown to confer

AChR stability (Banks et al., 2003; Willmann and Fuhrer, 2002).

However, AChR is much more stable than rapsyn, with a half-

life of �24 hr in muscle cells (Berg and Hall, 1975; Devreotes

and Fambrough, 1975; Gervasio and Phillips, 2005; Wang

et al., 1999). The receptor becomes more stable when clustered

or at the NMJ, with a half-life of�10 days (Levitt et al., 1980; Sal-

peter and Loring, 1985). Therefore, we anticipate reduced levels

of AChR after long-term inhibition of HSP90b.

HSP90 has three regions: N-terminal nucleotide binding

pocket for ATP and geldanamycin, the middle region for sub-

strate/client proteins, and the C-terminal region that interact

with cochaperone proteins such as HSP70, HSP40, and p23

(Pearl and Prodromou, 2006). The interaction with the cochaper-

ones has been shown to regulate proper folding or function of

substrate proteins. In line with this notion, we found that the

C-terminal truncation mutant of HSP90b1-620 was unable to

maintain rapsyn stability, although it was able to bind with rapsyn

(Figures 2E). In fact, due to its ability to interact with rapsyn, ex-

pressed HSP90b1-620 attenuates the interaction of endogenous

rapsyn and HSP90b and thus inhibits agrin-induced AChR clus-

ter formation. These results demonstrate that the C terminus of

HSP90b is involved in regulating the stability of rapsyn, suggest-

ing the possible involvement of other chaperone proteins. Note

that HSP90b overexpression did not appear to alter agrin-in-

duced AChR clusters (Figure 6B) and had no consistent effect

on levels of rapsyn or its half-life (Figure S12), suggesting that

the limiting factor may not be the levels of HSP90b, but the reg-

ulated interaction with rapsyn. Exactly how rapsyn is degraded

after dissociation from HSP90b remains to be fully elucidated.

The inhibition of 17-AAG-induced depletion of rapsyn by MG-

132 suggests that degradation occurs via 26S proteasomal-de-

pendent hydrolysis. This conclusion is further supported by our

observations that the lysosomal protease inhibitors, chloroquine

and monensin, had no effect on 17-AAG-induced loss of rapsyn.

In summary, this study reveals that the stability of rapsyn is

critically dependent on HSP90b, highlighting a novel function

of HSP90b in NMJ formation and maintenance. It also identifies

a mechanism in agrin signaling for AChR clustering, i.e., by upre-

gulating the interaction between HSP90b and rapsyn. Agrin is
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known to increase rapsyn interaction with AChR, which reaches

maximal levels within 40 min of stimulation (Moransard et al.,

2003). We show that levels of HSP90b in the surface AChR com-

plex begin to increase �1 hr after stimulation and peak around

12 hr (Figure 1C). These observations suggest that the initial tar-

gets of agrin/MuSK signaling include the interaction of the AChR

and rapsyn, which is followed by the rapsyn-HSP90b associa-

tion. Recruited HSP90b maintains the stability of rapsyn associ-

ated with surface AChRs, contributing to cluster formation and

maintenance (Figure 8). Considering that several members of

the HSP90 machinery are present at the PSD or aggresomes in

neurites (Moon et al., 2001; Romorini et al., 2004; Suzuki et al.,

1999; Walikonis et al., 2000), these results may provide insight

into CNS synapse formation. In support of the notion, pharmaco-

logical inhibitors of HSP90 have been shown to rapidly reduce

AMPA receptor currents in hippocampal slices, probably by in-

terfering with constitutive trafficking of AMPA receptors (Gerges

et al., 2004).

EXPERIMENTAL PROCEDURES

Reagents, Constructs, and Antibodies

Biotin-conjugated aBTX, R-BTX, streptavidin-coupled agarose beads, goat

anti-mouse IgG conjugated with Alexa Fluor 488, donkey anti-rabbit IgG con-

jugated with Alexa Fluor 488, and goat anti-mouse IgG conjugated Alexa Fluor

594 were from Molecular Probes. MG-132 (Z-Leu-Leu-Leu-CHO, I-130) was

from BostonBiochem. Interferon-g was from BioSource. 17-AAG, CHX,

Lubrol-PX, and other chemicals were from Sigma (St. Louis, MO). Mouse

HSP90b was subcloned between EcoR V and Xho I in pcDNA-Flag,

pcDNA3.1-Myc/His, or between Xho I and Sal I sites in pIRES2-EGFP (Addg-

ene). Mouse rapsyn was subcloned between Hind III and Xba I sites in pKH3 or

between EcoR I and BamH I sites in pEGFP-N1 (BD Biosciences Clontech) in-

frame upstream of the GFP epitope. Rapsyn was subcloned between BamH I

and EcoR I sites in pEF6/myc-his (Invitrogen) or in pGEX-2T. Respective dele-

tion mutants were generated by using the Quick Change Site-Directed Muta-

genesis Kit (Stratagene). The authenticity of all constructs was verified by DNA

sequencing. The immunogen to generate the anti-HSP90b antibody was from

Dr. David Toft (Mayo Clinic). GST-HSP90 mutant plasmids were a gift from Dr.

Takenawa (Park et al., 2005). HSP90a- and HSP90b-miRNA constructs were

generated using the BLOCK-iT Pol II miR RNAi Expression Vector Kit (Invitro-

gene, K4936-00). Oligonucleotide sequences for miRNA constructs were as

follows: 90b-1205 50-ATA AAG TTG AGG TAC TCA GGT-30, for 90b-1380 50-

TTT GGA GAA GGC CTC ATA GAA-30, for 90b-1626 50-AAT AGG CTC AGT

CAT ATA CAC-30, for 90a-2018 50-AAG ATG ACC AGA TCC TTC ACA-30, for

90a-2092 50-TGT AGA TCC TGT TAG CAT GGG-30, for 90a-2172 50-CAT

Figure 8. A Working Model

Agrin stimulates the interaction between AChR

and rapsyn to initiate clustering process. Subse-

quently, HSP90b becomes associated with rap-

syn. The latter interaction helps to stabilize rapsyn,

contributing to AChR cluster formation and main-

tenance.

TTC TTC AGT TAC AGC AGC-30. Antibodies

were purchased from ZYMED (HSP90b, 37-

9400), Santa Cruz (HSP90a, sc-8262; HSP70,

sc-24; c-Abl, sc-131; Cdc42; sc-87; MyoD,

sc304; MHC, sc32732), Sigma (FlagM2, F3165),

Chemicon (neurofilament, AB1983), Dako (synap-

tophysin, A0010), Torrey Pines Biolabs (GFP,

TP401), Upstate Biotechnology (4G10, 05-321;

Rac, 05-389), Novus (b-actin, NB600-501), and Abcam (myogenin, ab1835).

Rabbit anti-rapsyn (2741) and anti-MuSK antibodies were described previ-

ously (Luo et al., 2002). Anti-AChR a-subunit (mAb35) and anti-AChRb-subunit

(mAb124) antibodies were gifts from Dr. Rotundo and Dr. Lindstrom, respec-

tively. Neural agrin was prepared as described previously and used at 10

ng/ml (�0.1 nM) unless otherwise indicated (Luo et al., 2002).

Cell Culture and Transfection

Mouse muscle C2C12 myoblasts were propagated and induced to form myo-

tubes as described previously (Luo et al., 2002). Rapsyn�/� (clone 11-7) and

control (clone 12-10) myoblasts were maintained and differentiated as de-

scribed previously (Zhu et al., 2006). C2C12 myoblasts were transfected

with lipofectamine 2000 (Invitrogen, 11668-019) with a modified protocol.

C2C12 myoblasts, at 70%–80% confluence, were rinsed once with serum-

free medium before transfection because serum appeared to reduce transfec-

tion efficiency. After complete aspiration of the medium, myoblasts were incu-

bated with a mixture of DNA, lipofectamine, and serum-free medium for 8 hr

when the medium was changed to the growth medium. The DNA:lipofect-

amine ratio in the mixture was 1 mg:2 ml. The optimal volume of the mixture

for 24-well dishes was 200 ml per well that contained 2 mg plasmid DNA. Using

the modified protocol, we were able to achieve high transfection efficiency.

Isolation of Surface AChR and Associated Proteins

Myotubes were stimulated without or with agrin at 37�C for the indicated times

and incubated live with 300 nM biotin-aBTX for 2 hr at 4�C. After washing, cells

were lysed in the extraction buffer containing 0.5% Lubrol-PX, 50 mM KCl,

2 mM CaCl2, 4 mM MgCl2, 20% glycerol, 50 mM Tris-HCl, and inhibitors of

proteases and phosphatases, pH 7.4. Lysates were incubated with streptavi-

din-coupled agarose beads for 6 hr at 4�C and washed extensively with the ex-

traction buffer, except that the concentration of Lubrol-PX was 0.1%. Bead-

associated proteins were resolved by SDS-PAGE. Bands were excised from

gels, cut into 1 mm pieces, washed in 20 mM AMBIC, dried, and digested over-

night in trypsin. Peptides were extracted using 5% FA in 50% CAN and were

dried. Using a 1:1 dilution of CHCA matrix in 5%FA/50% ACN, samples were

spotted to an ABI 4700 Proteomics Analyzer (Applied Biosystems) MALDI-ToF

target plate. Four thousand shots were fired to acquire the initial MS spectrum,

and the top 20 most intense peaks were selected for MS/MS analysis.

Obtained sequences were used for database search with FASTA and BLAST

program.

Immunoprecipitation, Immunoblotting, and In Vitro Protein

Interactions

Cell lysates were cleaned by centrifugation at 12,000 rpm for 10 min and

subjected to immunoprecipitation with indicated antibodies and protein-A or

protein-G beads (Roche) at 4�C overnight. Bound proteins were resolved by

SDS-PAGE and analyzed by immunoblotting as described previously (Luo

et al., 2002; Zhu et al., 2006). In some experiments, membranes were stripped

and reblotted with different antibodies as described (Luo et al., 2002; Zhu et al.,
Neuron 60, 97–110, October 9, 2008 ª2008 Elsevier Inc. 107
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2006). Quantification of immunoblots was done by scanning films containing

nonsaturated signals with an Epson 1680 scanner and analyzed with NIH

Image.

GST-rapsyn proteins were produced in BL21, purified, and immobilized on

glutathione Sepharose 4B beads (Amersham Pharmacia). They were incu-

bated with cell lysates in pull-down experiments. To assay the direct interac-

tion, GST-HSP90b proteins were produced in BL21, purified, and immobilized

on beads. [35S]-labeled rapsyn was generated by in vitro translation in the

presence of [35S]methionine using TnT T7/SP6 Coupled Reticulocyte Lysate

System (Promega) (Luo et al., 2002) and was incubated with immobilized

GST-HSP90b in the binding buffer (25 mM HEPES, 1 mM DTT, 0.5% Triton

X-100, and 150 mM NaCl and protease inhibitors, pH7.5) for 2 hr at 4�C on a ro-

tator. After washing with PBS/0.1% Tween 20, bound [35S]-labeled proteins

were resolved on SDS-PAGE and subjected to autoradiogram.

AChR Cluster Assays

AChR clusters in C2C12 myotubes were measured as described previously

(Luo et al., 2002; Zhu et al., 2006). In some experiments, young myotubes

(2 days after changing to the differentiation medium) were transfected with in-

dicated constructs using the lipofectamine 2000 kit according to the manufac-

turer’s instruction. 24–36 hr later, transfected myotubes were subjected to

AChR cluster assays. For a particular treatment, at least 20 pictures were taken

from several chamber slides. AChR clusters whose diameters or longer axis

was equal to or greater than 4 mm were scored with Metamorph software.

17-AAG Injection

C57BL/6J mice were injected intraperitoneally at P7, P14, and P30 with 50 ml of

17-AAG (2.5 mg/kg) three times a week for 2 weeks. Control mice received

equal volumes of DMSO. AChR clusters were visualized in single teased fibers

of tibialis anterior muscles, and Z serial images were collected and collapsed

into a single image. Mouse embryos in uterus (E14.5) were injected intraperi-

toneally with 17-AAG (10 ml, 0.5 mM in 10% DMSO), returned to the pregnant

mice, and injected again at E15.5. Control embryos were injected with equal

volumes of the vehicle DMSO (10%). Two days after second injection, em-

bryos (E17.5) were dissected and processed for AChR staining as described

previously (Dong et al., 2006; Li et al., 2008; Zhu et al., 2006).

Intramuscular DNA Injection and Electroporation

In vivo electroporation was performed as previously described (Aihara and

Miyazaki, 1998) with modification. Briefly, 14-day-old C57BL/6J mice were

anesthetized with isoflurane. Respective miRNA were injected into the tibialis

anterior muscles (5 mg DNA in 10 ml TE buffer). Contralateral muscles were in-

jected with control plasmids that encode scrambled sequence. A pair of elec-

trode needles with a 5 mm gap was inserted into the muscle to encompass the

DNA injection sites, and electric pulses were delivered using an electric pulse

generator (ECM830; BTX). Five pulses followed by five additional pulses of the

opposite polarity were administered to each injection site. The parameters of

the pulses were 50 V at 60 Hz with each pulse lasting for 50 ms. Fourteen days

after electroporation, mice were sacrificed, and the tibialis anterior muscles

were fixed in cold 4% PFA-PBS for 24 hr and stained with R-BTX. Individual

muscle fibers were isolated and examined for AChR clusters under a Zeiss

confocal laser-scanning microscope. Z serial images were collected and col-

lapsed into a single image. AChR clusters on EGFP-positive fibers were ana-

lyzed with LSM 5 Image Examiner (Zeiss).

Statistical Analysis

Data of multiple groups were analyzed by ANOVA, followed by a student-New-

man-Keuls test. Two-tailed Student’s t test was used to compare data be-

tween two groups. Differences were considered significant at p < 0.05. Values

and error bars in figures denote mean ± SEM.

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Figures and can be found with

this article online at http://www.neuron.org/supplemental/S0896-6273(08)

00708-3.
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