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SUMMARY

Neuromuscular junction (NMJ) formation requires
precise interaction between motoneurons and
muscle fibers. LRP4 is a receptor of agrin that is
thought to act in cis to stimulate MuSK in muscle
fibers for postsynaptic differentiation. Here we dis-
sected the roles of LRP4 in muscle fibers and moto-
neurons in NMJ formation by cell-specific mutation.
Studies of muscle-specific mutants suggest that
LRP4 is involved in deciding where to form AChR
clusters in muscle fibers, postsynaptic differentia-
tion, and axon terminal development. LRP4 in
HEK293 cells increased synapsin or SV2 puncta in
contacting axons of cocultured neurons, suggesting
a synaptogenic function. Analysis of LRP4 muscle
and motoneuron double mutants and mechanistic
studies suggest that NMJ formation may also be
regulated by LRP4 in motoneurons, which could
serve as agrin’s receptor in trans to induce AChR
clusters. These observations uncovered distinct
roles of LRP4 in motoneurons and muscles in NMJ
development.

INTRODUCTION

Brain functions aremade possible by synapses, contacts formed

between neurons or between a neuron and a target cell. The

neuromuscular junction (NMJ) is a cholinergic synapse between

motoneurons and skeletal muscle fibers that has most, if not all,

features characteristic of a chemical synapse in the brain.

Because of its simplicity, high spatial resolution, and accessi-

bility, the NMJ has served as an informative model of synapto-

genesis (Sanes and Lichtman, 1999, 2001; Wu et al., 2010). Its

development requires the precise coordination between pre-

synaptic motoneurons and postsynaptic muscle fibers. Mecha-

nisms by which motoneurons instruct postsynaptic differentia-

tion are better characterized, whereas relatively little is known

about retrograde signals from the muscle fibers. Agrin is

a nerve-derived organizer of postsynaptic differentiation during
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NMJ formation (McMahan, 1990). It stimulates AChR cluster

formation in myotubes in culture (Ferns et al., 1993; Nitkin

et al., 1987) andmice lacking agrin do not form the NMJ (Gautam

et al., 1996). MuSK is a receptor tyrosine kinase that is essential

for agrin-induced clustering and for NMJ formation in vivo

(DeChiara et al., 1996; Glass et al., 1996; Kim and Burden,

2008; Lin et al., 2001; Yang et al., 2001). However, agrin and

MuSK do not directly interact (Glass et al., 1996); rather, MuSK

activation by agrin requires LRP4, a member of the LDL receptor

family (Kim et al., 2008; Zhang et al., 2008).

LRP4 is a single-transmembrane protein that possesses

a large extracellular domain with multiple LDLR repeats, EGF-

like and b-propeller repeats; a transmembrane domain; and a

short C-terminal region without an identifiable catalytic motif

(Johnson et al., 2005; Lu et al., 2007; Tian et al., 2006; Yama-

guchi et al., 2006). Mice lacking LRP4 die at birth and do not

form the NMJ, indicating a critical role in NMJ formation (Weath-

erbee et al., 2006). Evidence suggests that agrin binds to LRP4

and is necessary and sufficient to enable agrin signaling (Kim

et al., 2008; Zhang et al., 2008). It also interacts with MuSK

and this interaction is increased in response to agrin. Recent

studies of the crystal structure of an agrin-LRP4 complex

suggest that monomeric agrin interacts with LRP4 to form

a binary complex, which promotes the synergistic formation of

a tetramer crucial for agrin-induced AChR clustering (Zong

et al., 2012). These observations support a working hypothesis

that agrin binds to LRP4 in muscle cells, which acts in cis to

interact and activate MuSK to initiate signaling necessary for

postsynaptic differentiation (Kim et al., 2008; Wu et al., 2010;

Zhang et al., 2008, 2011).

To further investigate how LRP4 regulates NMJ formation, we

generated and characterizedmutant mice that lack LRP4 specif-

ically in muscle cells or motoneurons or both cells. Remarkably,

HSA-LRP4�/� mice, in which LRP4 is specifically ablated in

muscle cells, survived at birth and formed primitive NMJs, unlike

LRP4 null mutant mice, suggesting that a role of LRP4 in moto-

neurons or other cells in NMJ formation in the absence of muscle

LRP4. Severe morphological and functional deficits were ob-

served inmotor nerve terminals in HSA-LRP4�/�mice, indicating

a critical role of muscle LRP4 for presynaptic differentiation.

These hypotheses were further tested inmutant mice that lacked

LRP4 in motoneurons or in both muscle fibers andmotoneurons.

Results revealed distinct functions of LRP4 in muscle fibers and
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in motoneurons in NMJ formation and maintenance and suggest

that LRP4 of motoneurons was able to serve as agrin’s receptor

in trans to stimulate MuSK-dependent AChR clustering.

RESULTS

Aberrant NMJ Formation in the Absence ofMuscle LRP4
Genetic rescues demonstrated that LRP4 in muscle cells is suffi-

cient to initiate signaling for NMJ formation (data not shown)

(Gomez and Burden, 2011). To further investigate the role of

muscle LRP4, we generated LRP4f/f mice (see Experimental

Procedures and Figure S1A available online for details) and

crossed them with HSA-Cre mice, which express the Cre gene

under the control of HSA promoter. Cre expression in this line

is active at embryonic day (E) 9.5 in myotomal regions of somites

(Brennan and Hardeman, 1993; Crawford et al., 2000; Jaworski

and Burden, 2006; Li et al., 2008; Miniou et al., 1999; Muscat

and Kedes, 1987; Schwander et al., 2003) and is detectable in

almost all muscle fibers in postnatal day (P) 0 mice (Li et al.,

2008). Both mRNA and protein levels of LRP4 in resulting HSA-

Cre;LRP4f/f (or HSA-LRP4�/�) mice were significantly reduced,

compared to control LRP4f/f mice. The reduction was specific

for muscles and was not observed in other tissues including

spinal cords (Figures S1C and S1D). Residual LRP4 detected

in the ‘‘muscle’’ preparation may be due to contamination by

nerve terminals, blood vessels, and Schwann cells in muscles,

as observed previously (Li et al., 2008) (see below). Remarkably,

HSA-LRP4�/� pups were viable at birth and apparently able to

breathe and suck milk. A majority of HSA-LRP4�/� pups did

not die until P15 (Figure S1E). These results were unexpected

because the ablation of critical genes including agrin, MuSK,

rapsyn, Dok-7, as well as LRP4, prevents NMJ formation and

thus leads to neonatal lethality (DeChiara et al., 1996; Gautam

et al., 1995, 1996; Glass et al., 1996; Okada et al., 2006;

Weatherbee et al., 2006).

The neonatal survival of HSA-LRP4�/� mice suggests that

NMJs may form in the absence of LRP4 in muscle fibers. To

test this hypothesis, we stained HSA-LRP4�/� diaphragms

whole mount for AChR and phrenic nerve terminals. Indeed,

AChR clusters were observed in HSA-LRP4�/� diaphragms (Fig-

ures 1A–1C). However, compared to those in control LRP4f/f dia-

phragms, the clusters in HSA-LRP4�/�mice were abnormal with

the following characteristics. First, they were distributed in

a wider area in the middle of muscle fibers. The endplate band-

width increased from 166 ± 28 mm in control to 806 ± 103 mm

(p < 0.01, n = 5) in P0 as well as P10 HSA-LRP4�/� mice (Figures

1A–1D), suggesting a role of muscle LRP4 in restricting AChR

clusters in the central region. Second, the clusters appeared

elongated in morphology. In control mice, 93.9% of the clusters

were between 10–30 mm in length; however, in HSA-LRP4�/�

mice, cluster length ranged from 5 to >40 mm (Figures 1A–1C

and 1E). The average size of AChR clusters was reduced (Fig-

ure 1F). Moreover, the clusters distributed along nerve terminals

were consistently smaller (Figure 1C), suggesting that motor

terminals were unable to induce normal clusters. Third, we quan-

tified AChR clusters in 1 mm segments of left ventral diaphragms

to include clusters distributed outside the central area. The

number was increased from 588 ± 96 in control to 708 ± 89 in
HSA-LRP4�/� diaphragms (p = 0.03, n = 4) (Figures 1A–1C

and 1G). The average number of AChR clusters per muscle fiber

increased from 1.30 ± 0.45 in control to 1.59 ± 0.72 in HSA-

LRP4�/�mutants (p < 0.05, n = 37) (Figures S2A and S2B). These

results suggest formation of abnormal ectopic AChR clusters in

HSA-LRP4�/� mice. Finally, the AChR density at HSA-LRP4�/�

NMJs was reduced because the amplitudes of miniature end-

plate potentials (mEPPs) were smaller than those in control

mice (Figures 2A–2C). These results indicate that AChR clusters

formed in mutant mice were immature with altered number, size,

and AChR density. Together, these results indicate that the

formation of the immature clusters is not dependent on LRP4

in muscles but LRP4 from a nonmuscle source, likely motoneu-

rons. LRP4 in muscle cells, however, appeared to be necessary

for AChR cluster restriction in the central region and AChR

cluster maturation (see below).

LRP4 in Muscle for Motor Nerve Terminal Development
Motor nerve terminal differentiation is impaired in LRP4mitt null

mice. The terminals failed to stop in the central region of muscle

fibers and instead arborized extensively as if to search for AChR

clusters that do not form at all in LRP4mitt null mutant mice

(Weatherbee et al., 2006). These results suggest that LRP4 is

critical for motor nerve terminal differentiation. Muscle rescue

experiments suggested a role of muscle LRP4 in this event

(data not shown) (Gomez and Burden, 2011). However, loss-

of-function evidence is lacking, which is critical because LRP4

in motoneurons may also regulate NMJ formation (see below).

Gain-of-function studies were unable to dissect exact roles of

muscle LRP4 in motor terminal navigation and differentiation.

In particular, the relationship between AChR clusters and arbor-

ized terminals in the absence of LRP4 could not be investigated

because LRP4mitt null mice do not form AChR clusters.

In HSA-LRP4�/� mutant mice, primary nerve branches were

located in the central region of muscle fibers, as in control

mice (Figures 1A and 1H), indicating proper nerve navigation in

the absence of muscle LRP4. However, the secondary or intra-

muscular branches were increased remarkably in number from

55 ± 5.5 in control to 74 ± 8.8 in HSA-LRP4�/� mutant mice

(Figures 1A and 1I) and in length from 49.7 ± 15.3 mm in control

to 170 ± 89.4 mm in HSA-LRP4�/� mutant mice (p < 0.01,

n = 5) (Figures 1C and 1J and Table S1). In addition, they formed

tertiary and quaternary branches that effectively increased the

number of nerve terminals in HSA-LRP4�/� diaphragms (Figures

1A and 1C). These phenotypes qualitatively resembled those in

LRP4mitt null mice, indicating a critical role of LRP4 in muscles,

not motor neurons, in presynaptic differentiation. Intriguingly,

motor axons in HSA-LRP4�/� mice did not end with AChR

clusters, unlike those in controls where terminals associated

with clusters. Rather, the axons ignored or bypassed the clusters

to ‘‘overshoot’’ toward the periphery of muscle fibers where

AChR clusters were absent (Figure 1C, arrows). These observa-

tions indicate that muscle, but not neuronal, LRP4 is necessary

for a stop signal to motor axons and suggest that such a stop

signal is not mediated by homophilic interaction between LRP4

in muscles and motoneurons.

In LRP4f/+ control littermates, BTX staining showed almost

complete registration to synaptophysin (Figure S2C, arrows). In
Neuron 75, 94–107, July 12, 2012 ª2012 Elsevier Inc. 95



Figure 1. Aberrant NMJ Formation in HSA-LRP4–/– Mice

(A) Abnormal NMJmorphology in HSA-LRP4�/� mice. P0 control and mutant diaphragms were stained whole mount with a-BTX (red) to label AChR clusters and

with NF/synaptophysin antibodies (Syn) to label nerve terminals, which were visualized by Alexa Fluor 488-conjugated goat anti-rabbit antibody (green). The left

ventral areas of hemidiaphragms are shown. Arrow, primary nerve branches; arrowheads, secondary nerve branches. M, medial; L, lateral; V, ventral.

(B) Wider endplate areas in P0 and P10 HSA-LRP4�/� muscles, which were counterstained with phalloidin. Dashed lines indicate cluster-enriched regions.

(C) Increased secondary nerve branches (arrowhead) and overshot axon terminals (empty arrowheads). Arrows, primary branches; dashed lines, boundary of

cluster-rich regions. S, sensory or autonomic nerve axons; L, lateral.

(D–J) Compared to controls, HSA-LRP4�/� mice showed increased bandwidth (D), increased variability in cluster sizes (calculated using LSM Image Browser

software, Zeiss) (E), decreased size of all clusters (F), increased number of AChR clusters (G), no difference in the distances between primary nerve branches and

the muscle midlines (H), increased number of secondary/intramuscular branches (I), and increased length of secondary branches (J). Data are shown as mean ±

SEM. *p < 0.05; **p < 0.01 (n = �4–8; t test). Please also see Figures S1 and S2.
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contrast, however, the area stained by both BTX and synapto-

physin was reduced from 51.9% ± 10.0% in control to

22.9% ± 15.2% at HSA-LRP4�/� NMJs (Figure S2D), although

every AChR cluster was positive for synaptophysin. In agree-

ment, mEPP frequency was reduced by 53.3% at HSA-LRP4�/�

NMJs (0.42 ± 0.09/min in HSA-LRP4�/� versus 0.90 ± 0.11/min

in control littermates) (Figures 2A, 2D, and 2E), indicating

compromised vesicle release in the absence of muscle LRP4.

Amplitudes of endplate potentials (EPPs) were decreased from

22.2mV ± 2.17mV in control to 6.75mV ± 2.22mV in HSA-

LRP4�/� mice (p < 0.01, control n = 5, and HSA-LRP4�/�

n = 4), suggesting a reduction in quantum contents. During

development in wild-type mice, mEPP amplitudes decreased

from 2.30mV ± 0.23mV at P0 to 1.63mV ± 0.10mV at P15
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NMJs (Figures 2C and 2H), whereas the frequencies increased

during this time (from 0.90 ± 0.11/min at P0 to 27.0 ± 3.1/min

at P15) (Figures 2E and 2J), in agreement with previous reports

(Kelly, 1978). In HSA-LRP4�/� mice, however, mEPP frequen-

cies were unable to increase during this time and were only

2.8% of control littermate at P15 when most mutant mice died

(Figures 2E and 2J). Notice that mEPP amplitudes in HSA-

LRP4�/� mice between P0 and P15 were similar (Figures 2C

and 2H). These results indicate that in the absence of muscle

LRP4, the development or maturation of presynaptic terminals

is more severely impaired than postsynaptic counterparts.

Next, we examined NMJ structures in control and HSA-

LRP4�/� mice by electron microscopic analysis. In control or

LRP4loxp/+ NMJs, axon terminals were filled with synaptic



Figure 2. Compromised NMJ Transmission in HSA-LRP4–/– Mice

mEPPs were recorded in P0 (A–E) and P15 (F–J) control and HSA-LRP4�/� muscles.

(A and F) Representative mEPP traces.

(B and G) Cumulative probability plot of mEPP amplitude distribution.

(C and H) Reduced mEPP amplitudes in P0 HSA-LRP4�/� mice.

(D and I) Cumulative probability plot of mEPP frequency distribution.

(E and J) Reduced mEPP frequencies in HSA-LRP4�/� mice. *p < 0.05; **p < 0.01 (mean ± SEM, n = 5 for P0; n = 4 for P15; t test). Black, control mice; red, HSA-

LRP4�/� mice.
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vesicles, some of which were docked on electron-dense active

zones (Figure 3A). Quantitatively, nerve terminal numbers at P0

decreased from 3.16 ± 0.75 in control to 1.5 ± 0.54 in HSA-

LRP4�/� mice and at P15 from 4.0 ± 0.89 in control to 1.40 ±

0.55 in HSA-LRP4�/� mice, respectively (p < 0.01, n = 6) (Fig-

ure 3B). The number of active zones was decreased from

2.17 ± 0.75 and 3.0 ± 0.89 in control to 1.0 ± 0.63 and 0.33 ±

0.52 in mutant mice at P0 and P15, respectively (p < 0.05 in P0

and p < 0.01 in P15, n = 6) (Figure 3C). The density of synaptic

vesicles within 0.04 mm2 areas surrounding active zones or adja-

cent to terminals was decreased in both P0 and P15 HSA-

LRP4�/� mice (5.67 ± 1.0 in control to 1.67 ± 1.73 in mutants

and 9.78 ± 1.20 in control to 3.67 ± 2.12 in mutants, respectively)

(p < 0.01, n = 9) (Figure 3D), although the sizes or diameters

of synaptic vesicles were similar between control and HSA-

LRP4�/� mice (Figure 3E). Muscle LRP4 mutation seems to

have little effect on the synaptic cleft width (Figure 3F); however,

postjunctional folds, which were occasional at P0 and prominent

at P15, were decreased (Figure 3A), as indicated by reduction in

postsynaptic membrane length from 9.93 ± 2.57 mm in control to

6.19 ± 1.26 mm in HSA-LRP4�/� mice at P0 (p < 0.05, n = 6) and

from 30.2 ± 8.51 mm in control to 15.9 ± 6.90 mm in HSA-LRP4�/�

mice at P15 (p < 0.01, n = 8) (Figure 3G). These results provide

anatomical evidence for NMJ deficits in HSA-LRP4�/� mice, in

agreement with impaired neurotransmission revealed by electro-

physiological recording.

LRP4 in Motoneurons Is Dispensable for NMJ Formation
The finding that NMJs formed in HSA-LRP4�/� mice, but not in

LRP4mitt null mice, suggests a role of LRP4 in motoneurons in

NMJ formation. Indeed, LRP4 is a ubiquitous protein, present
in various tissues including the spinal cord and brain, in addition

to skeletal muscles (Lu et al., 2007;Weatherbee et al., 2006) (Fig-

ure S1D) (see below). Is LRP4 in motoneurons required for NMJ

formation? To address this question, we generatedmotoneuron-

specific LRP4mutant mice, HB9-LRP4�/�, by crossing HB9-Cre

mice with floxed LRP4 mice. HB9 is a motoneuron-specific tran-

scription factor critical for motoneuron differentiation (Arber

et al., 1999; Thaler et al., 1999). HB9-Cre mice express Cre

specifically in motoneurons at E9.5 (Arber et al., 1999) and

have been used to study proteins in motor neuron development

and motoneuron proteins in NMJ formation (Arber et al., 1999;

Bolis et al., 2005; Li et al., 1999; Yang et al., 2001). In agreement,

levels of LRP4 protein and mRNA were reduced in the spinal

cord of HB9-LRP4�/� mice, compared to controls (Figures

S3A–S3D). A mild but significant reduction in LRP4 was also

observed in HB9-LRP4�/� muscles, suggesting that LRP4 is

present in motor nerves and terminals in muscles. However,

HB9-LRP4�/� mice were viable at birth, showed no difference,

compared to controls, in ability to breathe and suck milk and

mobility, and survived as long as more than 1 year after birth

(data not shown). Whole-mount staining of P0 diaphragms indi-

cated that NMJmorphology in HB9-LRP4�/�mice was similar to

that of control littermates (Figure S3E). No difference was

observed in primary branch localization, the number and size

of secondary branches, AChR clusters, the bandwidth of clus-

ters, as well as AChE distribution (Figures S3F–S3J) (data not

shown). Electrophysiological characterization failed to reveal

any difference either in the frequency and amplitudes of mEPPs

(Figures S3K, S3M, and S3N) or in EPP amplitudes (Figures S3L

and S3O) between HB9-LRP4�/� and control muscles, indi-

cating normal neuromuscular transmission. These observations
Neuron 75, 94–107, July 12, 2012 ª2012 Elsevier Inc. 97



Figure 3. Aberrant NMJ Structures in HSA-LRP4–/– Mice

(A) Representative electron micrographic images of NMJs in P0 and P15 LRP4loxP/+ control and HSA-LRP4�/� mice. Asterisks, active zones; JF, junctional folds;

SBL, synaptic basal lamina; N, nerve terminals; M, muscle fibers; SC, Schwann cells.

(B–G) Quantitative data were shown for nerve terminal numbers (B), active zone number per nerve terminal (C), synaptic vesicle density (D), synaptic vesicle

diameter (E), synaptic cleft width (F), and postsynaptic membrane length (G). Data are shown as mean ± SEM. *p < 0.05; **p < 0.01 (n = 6, t test).
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demonstrate that LRP4 in motoneurons is not required for

NMJ formation or function when LRP4 is available in muscle

fibers.

Double Mutation of LRP4 in Both Muscles and
Motoneurons Generates Similar Phenotypes of LRP4
Null Mutation
The observation that HSA-LRP4�/� mice form AChR clusters,

many of which are innervated (Figures 1A, 1C, and S2C),

suggests that LRP4 from nonmuscle cells could be critical.

Considering the intimate, direct interaction betweenmotor nerve

terminals and muscle fibers, we hypothesized that LRP4 in

motoneurons may be involved. Yet HB9-LRP4�/� showed no

deficit in NMJ formation or function (Figure S3). Alternatively,

AChR clusters in HSA-LRP4�/�micemay result from incomplete

or mosaic ablation of the LRP4 gene in muscles. Previous work

from several groups including ours indicates that in HSA-Cre

mice, Cre is expressed in most, if not all, muscle fibers when

crossed with Rosa reporter mice (Escher et al., 2005; Jaworski

and Burden, 2006; Li et al., 2008). Moreover, when b-catenin is
98 Neuron 75, 94–107, July 12, 2012 ª2012 Elsevier Inc.
ablated in muscle cells using HSA-Cre, mutant mice die immedi-

ately after birth without functional NMJs (Li et al., 2008).

We further generated double knockout mice—HSA-

Cre;HB9-Cre;LRP4f/f (HSA/HB9-LRP4�/�)—in which the LRP4

gene is ablated in both motoneurons and muscles. Remark-

ably, HSA/HB9-LRP4�/� pups died soon after birth with

cyanosis. AChR cluster formation was severely impaired (Fig-

ure 4) as clusters were almost undetectable in HSA/HB9-

LRP4�/� diaphragms, except occasional smaller, weak clus-

ters. Their size was only 9.6% of that in LRP4loxP/+ control

and 34.9% of that in HSA-LRP4�/� (Table S1). Quantitatively,

the number of AChR clusters in double KO pups was reduced

by 95.5%, compared to LRP4loxP/+ controls, and by 96.2%,

compared to HSA-LRP4�/� pups (588 ± 95.9 per mm2 in

controls, 707 ± 89.2 per mm2 in HSA-LRP4�/�, and 26.7 ±

15.8 per mm2 in HSA/HB9-LRP4�/� pups) (Table S1). These

results demonstrate that the ablation of LRP4 in motoneurons

further impairs AChR clustering in HSA-LRP4�/� mice and

identifies a role of motoneuron LRP4 in AChR clustering (Fig-

ure 4F). As observed in LRP4mitt null mice, aneural AChR



Figure 4. Motoneuron-Muscle Double Mutant Mice Exhibit Similar NMJ Deficits as LRP4mitt Mutant Mice

(A) Abnormal NMJ morphology in HSA/HB9-LRP4�/� mice. Diaphragms (P0) were stained whole mount as in Figure 1. M, medial; L, lateral; V, ventral; asterisk,

phrenic nerves; arrows, primary nerve branches; arrowheads, secondary or tertiary nerve branches.

(B) Reduced AChR clusters and extensively arborized axon terminals in HSA/HB9-LRP4�/� mice. Arrows, primary nerve branches; arrowheads, secondary or

tertiary nerve branches or AChR clusters.

(C) Reduction in AChR clusters in HSA/HB9-LRP4�/� diaphragms. *p < 0.05; ###p < 0.001 (mean ± SEM, n = 4, two-way ANOVA).

(D) Increased length of secondary branches in HSA-LRP4�/�, HSA/HB9-LRP4�/�, and LRP4mitt muscles. **p < 0.01; #p < 0.05 (mean ± SEM, n = 5, two-way

ANOVA).

(E) Increased number of tertiary and quaternary branches in HSA/HB9-LRP4�/� and LRP4mitt muscles, compared to HSA-LRP4�/� samples. **p < 0.01; ##p < 0.01

(mean ± SEM, n = 4, two-way ANOVA).

(F) Diagrams summarizing NMJ morphological phenotypes of control and respective mutant mice. Green, nerve; red, AChR clusters; blue ovals, nuclei.

Please also see Figures S3 and S4 and Table S1.
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clusters were almost undetectable in diaphragms of E13.5

HSA/HB9-LRP4�/� embryos, indicating impaired prepatterning

of muscle fibers (Figure S4A).

Regulation of Presynaptic Differentiation by
Motoneuron and Muscle LRP4
The presynaptic deficits in HSA/HB9-LRP4�/� mice also

resemble those in LRP4mitt null as the number and length of

secondary and tertiary branches of these two genotypes were

similar (Table S1) (Figures 4A and 4B). However, compared to

HSA-LRP4�/�, secondary branches were significantly longer in

HSA/HB9-LRP4�/� and LRP4mitt null mice, indicating a role of

motoneuron LRP4 in nerve terminal differentiation. This notion

was supported by increased number of tertiary and quaternary

branches in HSA/HB9-LRP4�/� and LRP4mitt mice (Figure 4E).

Moreover, motor nerve terminals appeared to be fragmented in

diaphragms of both HSA/HB9-LRP4�/� mice and LRP4mitt null

mice. In contrast, such discontinuous intumescence of nerve

terminals was not observed in HSA-LRP4�/� muscles (Figures

S4B and S4C). LRP4 null mutation or conditional mutation

(in muscles or in both muscles and motoneurons) had little effect

on the number and distribution ofmotoneurons (Figures S4D and

S4E), suggesting that LRP4 controls neuron differentiation, but

not survival.

To investigate how muscle LRP4 regulates presynaptic differ-

entiation, we tested whether LRP4 could be synaptogenic using

an established coculture assay (Biederer et al., 2002; Fogel et al.,

2011; Graf et al., 2004; Scheiffele et al., 2000). HEK293 were

transfected with EGFP alone (control) or together with LRP4

and cocultured with cortical neurons. Cells were stained for syn-

apsin and SV2, both markers for presynaptic differentiation.

Synapsin or SV2 puncta in axons were not altered by HEK293

cells expressing EGFP alone (Figures 5A and 5D). In contrast,

the puncta in axon segments in contact with HEK293 cells ex-

pressing LRP4 were increased. Quantitatively, the numbers of

positive HEK293 cells (i.e., those associated with synapsin or

SV2 puncta) were increased in the coculture with cells express-

ing LRP4, compared to those expressing EGFP alone (Figures

5B and 5E). The intensity of synapsin and SV2 puncta overlap-

ping with LRP4-expressing cells was higher than that with

control cells (Figures 5C and 5F). These results demonstrate

that LRP4 may have synaptogenic activity to induce or promote

presynaptic differentiation. Together, these observations indi-

cate distinct functions of LRP4 in muscle and in motoneurons

for presynaptic differentiation.

Soluble Complex of the Extracellular Domain of LRP4
and Agrin Is Sufficient to Stimulate MuSK and Induce
AChR Clustering
How would LRP4 in motoneurons regulate postsynaptic differ-

entiation? Transmembrane proteins of the LDLR family could

undergo proteolytic cleavage at the extracellular domain to

release diffusible ecto-domain (Carter, 2007; Selvais et al.,

2011; von Arnim et al., 2005; Willnow et al., 1996). We wondered

whether the extracellular domain of LRP4 (ecto-LRP4) could be

cleaved by similar mechanisms and the soluble ecto-LRP4

may serve as agrin receptor. Earlier we showed that ecto-

LRP4 is able to bind to agrin in solution (Zhang et al., 2008);
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however, it is unknown whether the soluble binary complex is

sufficient to activate MuSK and/or induce AChR clusters.

HEK293 cells do not express LRP4 and thus do not respond to

agrin even after transfection with MuSK (Zhang et al., 2008)

(Figure 6A, lanes 5 and 6). Cotransfection with full-length LRP4

enabled HEK293 cells to respond to agrin, with increased

MuSK tyrosine phosphorylation (Figure 6A, lanes 1 and 2), in

agreement with our previous study (Zhang et al., 2008). Intrigu-

ingly, stimulation with agrin together with ecto-LRP4 was also

able to elicit tyrosine phosphorylation of MuSK in HEK293 cells

that were transfected only with MuSK (Figure 6A, lanes 3 and

4). These results demonstrate that the soluble complex of

ecto-LRP4 and agrin is sufficient to stimulate MuSK, in agree-

ment with a recent report (Zhang et al., 2011).

Next, we determined whether the agrin-ecto-LRP4 complex is

sufficient to induce AChR clusters in muscle cells. C2C12

myoblasts were transfected with miLRP4-1062 or scrambled

control miRNA and resulting transfected myotubes were identi-

fied byGFP that is expressed by themiRNA vector. LRP4 knock-

down inhibits agrin induction of AChR clusters in miLRP4-

1062-transfected myotubes, as observed before (Zhang et al.,

2008). Treatment of myotubes with ecto-LRP4, in the absence

of agrin, had no effect on basal, indicating that ecto-LRP4 is

unable to serve as ligand for MuSK without agrin. It had no effect

on agrin-induced clusters in control myotubes, which express

wild-type LRP4. Remarkably, in the presence of agrin, ecto-

LRP4 increased the number of agrin-induced AChR clusters in

miLRP4-1062-transfected myotubes (compared to that in the

absence of ecto-LRP4) (Figures 6C and 6D). This result indicates

that soluble ecto-LRP4 is sufficient to serve as a receptor for

agrin to initiate pathways for AChR clustering.

Inhibition of Extracellular Cleavage of LRP4 Reduced
AChR Clusters in HSA-LRP4–/– Mice
To identify the protease(s) that cleave LRP4, we transfected

HEK293 cells with Flag-LRP4 and ecto-LRP4. A Flag-tagged

LRP4 fragment was detected in the conditioned media of trans-

fected cells, at the molecular weight of 180 kDa, similar to that

of Flag-ecto-LRP4 (Figure 7B, left lane). This result suggests

that LRP4 could be released into the cultured media by pro-

teolytic shedding in the extracellular juxtamembrane domain

(Figure 7A, red arrow; Figure 7B). Interestingly, treatment of

GM6001, an inhibitor of MMP, but not b-secretase inhibitor IV,

significantly reduced the amount of Flag-tagged soluble LRP4

in the medium (Figures 7B and 7C), suggesting possible involve-

ment of MMPs in generating ecto-LRP4, in agreement with a

recent report (Dietrich et al., 2010).

Ecto-LRP4 was detectable in motor nerves as well as skeletal

muscles (Figures S5A and S5B). The amount of LRP4 in

synapse-rich regions appeared higher than that in nonsynapse

regions of skeletal muscles. To study whether LRP4 cleavage

is involved in NMJ formation, we injected GM6001 into pregnant

females, and we analyzed NMJs in newborn pups of indicated

genotypes. It had little effect on NMJ formation in LRP4loxP/+

control mice (582 ± 31.8/mm2 in GM6001-injected and 589 ±

39.6/mm2 in DMSO-injected mice; n = 3, p = 0.81). This result

was in agreement with the finding of normal NMJs in HB9-

LRP4�/�mice (i.e., motoneuron LRP4 is not critical whenmuscle



Figure 5. Expression of LRP4 in HEK293 Cells Promotes Presynaptic Development in Contacting Axons

(A and D) HEK293 cells transfected with EGFP alone or together with Flag-LRP4 (1:10) were cocultured with cortical neurons for 36 hr and immunostained with

anti-synapsin (A) or SV2 (D) antibodies (red). Cell nuclei were counterstained with DAPI (blue). Arrows, synapsin or SV2 punctas in axons in contact with HEK293

cells; arrowheads, axons in contact with EGFP-labeled HEK293 cells.

(B and E) Number of HEK293 cells contacting axons with synapsin or SV2 punctas.

(C and F) Total integrated intensity of synapsin or SV2 puncta. Data are shown as mean ± SEM. *p < 0.05, n = 3 experiments with 30–50 HEK293 cells per

experiment.
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LRP4 is available) and suggested that the majority of muscle

LRP4 functions in cis as agrin receptor. However, the number of

primitive AChR clusters was significantly reduced in GM6001-

injected HSA-LRP4�/� mice (134 ± 34.2/mm2), compared to

DMSO-injected mice (644 ± 52.1/mm2) (n = 3, p < 0.01) (Figures

7D and 7E). These results could support the hypothesis that

ecto-LRP4 from motoneurons may serve as an agrin receptor

in trans for MuSK activation in muscle fibers.

DISCUSSION

This study confirms that LRP4 in muscles serves as an obligate

receptor for agrin and is necessary and sufficient to mediate

agrin signaling in NMJ formation and maturation. It reveals func-

tions of LRP4 in NMJ formation. Muscle LRP4 appears to restrict
AChR clusters in the middle region of muscle fibers, directs

a stop signal for axon terminals, and is critical for presynaptic

differentiation. On the other hand, LRP4 in motoneurons has at

least two functions. It promotes the formation of immature

AChR clusters that are sufficient to prevent neonatal lethality.

This effect appears to bemediated by ecto-LRP4 frommotoneu-

rons that serves as agrin’s receptor in trans to initiate agrin

signaling inmuscles. Moreover, motoneuron LRP4 is also neces-

sary for axon terminal differentiation and well-being.

Muscle LRP4 for Presynaptic Differentiation
In LRP4mitt null mutant mice, motor axons fail to terminate in the

middle region of muscle fibers; instead, they arborized exten-

sively as if to search for AChR clusters, which do not form at

all in LRP4mitt null mutant mice (Weatherbee et al., 2006). These
Neuron 75, 94–107, July 12, 2012 ª2012 Elsevier Inc. 101



Figure 6. Soluble Ecto-LRP4 Is Sufficient to Activate MuSK and Induce AChR Clusters in Muscle Cells

(A) Ecto-LRP4 enabled agrin activation of MuSK in HEK293 cells. Cells were transfected with Flag-MuSK alone (lanes 3–6) or with Flag-LRP4 (lanes 1 and 2).

Transfected cells were treated with agrin alone or together with ecto-LRP4 for 2 hr. Flag-MuSK was immunoprecipitated with anti-Flag (M2) antibody and

examined for tyrosine phosphorylation bywestern blotting with anti-phosphotyrosine antibody 4G10. Immunoprecipitates and lysates were blottedwith anti-Flag

(M2) antibody to demonstrate equal amounts of MuSK in precipitates or lysates. Expression of transfected Flag-LRP4 was shown by blotting lysates with anti-

LRP4 (ECD) antibody. IP, immunoprecipitation; IB, immunoblotting; MW, molecular weight; kDa, kilodalton.

(B) Quantitative analysis of data in (A). **p < 0.01; #p < 0.05; yyp < 0.01 (mean ± SEM, n = 3, two-way ANOVA).

(C) Ecto-LRP4 and agrin were sufficient to induce AChR clusters in LRP4-deficient myotubes. Young C2C12 myotubes were transfected with scrambled miRNA

(Scr-miRNA, white bars) or LRP4-specific miRNA (miLRP4-1062, red bars) and were stimulated with or without agrin in the presence or absence of soluble ecto-

LRP4. AChR clusters were visualized by staining with a-BTX in myotubes expressing GFP that was encoded by the miRNA parental vector. Arrows, AChR

clusters. Representative images of experiments that were repeated at least three times with similar results are shown.

(D) Quantitative analysis of data in (C). AChR clusters larger than 4 mm were scored. **p < 0.01; ##p < 0.01; yyp < 0.01 (mean ± SEM, n = 3, two-way ANOVA).
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phenotypes were duplicated in HSA-LRP4�/� mice, indicating

that presynaptic deficits are caused by the lack of LRP4 in

muscles, but not in motoneurons. In addition to extensive arbor-

ization, axon terminals contained fewer synaptic vesicles and

active zones. These results suggest thatmuscle LRP4may direct

a retrograde mechanism for presynaptic differentiation. The

extensive terminal arborization in LRP4 or MuSK null mutants

was thought to be a compensatory response of motoneurons

to look for AChR clusters that the mutant mice fail to form.

Intriguingly, axons in HSA-LRP4�/� mice appeared to ignore

primitive AChR clusters and extend to outside of the already-

widened cluster-rich areas. These observations suggest that

the LRP4-dependent stop signal may not be retained in AChR

clusters.
102 Neuron 75, 94–107, July 12, 2012 ª2012 Elsevier Inc.
How muscle LRP4 directs presynaptic differentiation re-

mains unclear. Intriguingly, our in vitro study suggests that

LRP4 of HEK293 cells may have synaptogenic activity for

cortical neurons. Having a large extracellular domain, LRP4

is able to interact with LRP4 of another cell in a homophilic

manner (Kim et al., 2008). However, this mechanism is not

supported by lack of NMJ deficits in HB9-LRP4�/� mice (Fig-

ure S3). Whether muscle LRP4 may organize presynaptic

differentiation via direct interaction with a receptor on moto-

neurons demands further investigation. Of note, such a cell

contact-dependent mechanism may be more feasible for devel-

oping NMJs but less for mature NMJs whose synaptic clefts

could be as large as 100 nm in distance (Sanes and Lichtman,

1999).



Figure 7. MMP-Mediated LRP4 Proteolytic Cleavage Is Required for Immature AChR Clusters in HSA-LRP4–/– Mice

(A) Schematic diagram of LRP4’s structure. LRP4 (ECD) monoclonal antibody recognizes the epitope localized between amino acid residues 26 and 350.

(B) MPP inhibition reduced the amount of soluble ecto-LRP4 in conditioned media. HEK293 cells were transfected with Flag-ecto-LRP4 (left lane, as control) or

Flag-LRP4 (right three lanes). Transfected cells were rinsed and cultured in freshmedia in the presence of vehicle (control) or GM6001, a general MMP inhibitor, or

b-secretase inhibitor IV (both at 10 mM) for another 24 hr. Conditioned media were analyzed for soluble ecto-LRP4 by anti-LRP4 (ECD) antibody. Cell lysates were

also probed with Flag (M2) and a-Tubulin antibodies to indicate equal amounts of proteins.

(C) Quantitative analysis of results in (B). **p < 0.01 (mean ± SEM, n = 3, two-way ANOVA).

(D) MMP inhibition reduced AChR clusters in HSA-LRP4�/�, but not in LRP4loxP/+, muscles. Pregnant females were injected with GM6001 (100 mg/kg, i.p.) or

vehicle DMSO three times at gestation days 13.5, 15.5, and 17.5, respectively. Diaphragms of P0 mice were stained whole mount as described in Figure 1.

Arrows, primary nerve branches; arrowheads, secondary nerve branches. Insets, images of AChR clusters in the central region. M, medial; L, lateral; V, ventral.

(E) Quantitative analysis of AChR clusters in (D). *p < 0.05 (mean ± SEM, n = 3, t test). Please also see Figures S5 and S6.
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It is worth pointing out that AChR clusters that are formed in

the absence of muscle LRP4 are primitive, varying in size and

being distributed in a wider central region (Figure 1). Reduced

mEPP amplitudes suggest that they are impaired in function

(Figure 2). Moreover, junctional folds were reduced in HSA-

LRP4�/� NMJs. These deficits plus the presynaptic deficits

described above demonstrate that LRP4 in muscles plays

an unequivocal role in postsynaptic differentiation. They also

raise a possibility that the presynaptic phenotypes in HSA-
LRP4�/� mice may be secondary to neuromuscular deficits

as in agrin and MuSK mutant mice (DeChiara et al., 1996;

Gautam et al., 1996; Glass et al., 1996). This mechanism and

the possible impaired synaptogenic activity are not mutually

exclusive and are worthy of further investigation. Moreover,

the presynaptic deficits of LRP4 null or HSA-LRP4�/� mice

are different from those in muscle-specific b-catenin mutant

mice (Li et al., 2008), suggesting complexity of retrograde

mechanisms.
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Figure 8. A Working Model for LRP4 at the NMJ

LRP4 in muscles serves as an obligate receptor for agrin, which is necessary

and sufficient to mediate postsynaptic differentiation and NMJ maturation. In

addition, it directs axons about where to stop, restricts AChR clusters in the

middle region of muscle fibers, and regulates presynaptic differentiation. On

the other hand, LRP4 in motoneurons undergoes extracellular cleavage to

release ecto-LRP4, which acts as agrin’s receptor in trans to stimulate AChR

clustering. Motoneuron LRP4 is also necessary for differentiation and well-

being of motor axons. Please also see Figure S7.
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Motoneuron LRP4 for Postsynaptic Differentiation
The findings that primitive AChR clusters are formed in HSA-

LRP4�/� mice but abolished by additional ablation of moto-

neuron LRP4 (i.e., in HSA/HB9-LRP4�/� mice) suggest a role

of motoneuron LRP4 in NMJ formation. Because HB9-LRP4�/�

mice are viable with normal NMJs, motoneuron LRP4 is dispens-

able when LRP4 is available from muscles. We speculate that

LRP4 is so critical for NMJ formation and/or maintenance that

a safeguard mechanism is created in case of abnormal expres-

sion or function of LRP4 in muscles or motoneurons under path-

ological conditions.

Our data suggest that LRP4 in motoneurons may serve as

a receptor of agrin in trans. It is possible that the extracellular

domain of LRP4 may hang like a chandelier from motoneurons

and interact with agrin andMuSK. It is unclear, however, whether

the extracellular region is able to reach MuSK on muscle cells.

Alternatively, it is cleaved to release ecto-LRP4, which binds to

agrin to activate MuSK. The latter model is supported by the

following evidence. First, ecto-LRP4 could serve as a receptor

for agrin to stimulate MuSK or AChR clustering. Second, ecto-

LRP4 was detected in motor nerves and appeared enriched in

the synapse-rich region (Figure S5B). Third, inhibition of MMP

attenuated the formation of primitive AChR clusters in HSA-

LRP4�/� mice. These observations suggest that motoneuron

LRP4 may function as a receptor for agrin in trans to activate

MuSK in muscle cells for postsynaptic differentiation. In this

case, the soluble agrin-ecto-LRP4 complex could be considered

as a ‘‘coligand’’ for the kinase. It is worthwhile to notice that ecto-

LRP4 does not stimulate AChR clustering by itself (i.e., without

agrin); and in the presence of full-length LRP4 in muscle, it

does not further increase agrin’s effect, suggesting that ecto-

LRP4 acts via a similar mechanism of full-length LRP4 in

muscles. MMP3 mutation was shown to impair the NMJ (Van-

Saun et al., 2003) and one of its substrates is agrin (VanSaun

and Werle, 2000). It remains unknown whether MMP3 also

cleaves LRP4. However, GM6001 is an inhibitor of multiple

MMPs and thus may alter cleavage of various substrates.

Why would motoneuron LRP4 be unable to form normal NMJs

(in the absence of muscle LRP4)? First, the amounts of LRP4

contributed by motoneurons at the NMJ may be limited and

insufficient to initiate necessary signaling thresholds in muscle

cells. This hypothesis is supported by western blot analysis of

motoneuron- and/or muscle-specific LRP4 knockout muscles.

As shown in Figure S6, 63.5% of LRP4 in muscles was derived

from expression in muscle fibers, 19.4% frommotor nerve termi-

nals, and the residual 17.1% from Schwann cells or blood

vessels. Moreover, heterozygous muscle-specific mutant mice

(HSA-LRP4+/�) did not show NMJ deficits because they ap-

peared to express more than 60% of LRP4 (Figures S5C–S5F).

Likewise, MMP inhibition impaired NMJ formation in HSA-

LRP4�/�mice, but not control mice (Figures 7D and 7E). Second,

LRP4 receptor function in cis in muscles may be more efficient

than the trans-receptor. Third, in addition to function as a re-

ceptor of agrin, LRP4 in muscles appears to serve as a scaffold

for the MuSK signaling complex. AChR was shown to associate

with MuSK and rapsyn (Apel et al., 1995; Fuhrer et al., 1997;

Moransard et al., 2003). This interaction was abolished or atten-

uated inmuscle-specific, double, and null LRP4mutantmuscles,
104 Neuron 75, 94–107, July 12, 2012 ª2012 Elsevier Inc.
but not in motoneuron-specific mutant muscles (Figures S7A

and S7B). Finally, motoneuron LRP4 may be unable to generate

the retrograde signals for presynaptic differentiation.

Coordinated Efforts of Motoneuron and Muscle LRP4 in
Synapse Formation
Results of this study highlight distinct functions of motoneuron

andmuscle LRP4 for NMJ formation andmaintenance (Figure 8).

In a working model, motoneuron LRP4 contributes to formation

of primitive AChR clusters and initial postsynaptic differentiation.

This effect is probably mediated by ecto-LRP4, released by

extracellular cleavage, which acts as agrin’s receptor in trans

to stimulate AChR clustering. Motoneuron LRP4 is also neces-

sary for well-being of motor axons. On the other hand, muscle

LRP4 plays a dominant role in NMJ formation. It instructs where

nerve terminals stop and where muscle fibers form AChR clus-

ters, is essential for NMJ maturation, and regulates presynaptic

differentiation. These observations may have an implication for

understanding how LRP4-like ‘‘receptors’’ work in other

contexts including CNS synapse formation and plasticity.

EXPERIMENTAL PROCEDURES

Reagents, Antibodies, and Constructs

Chemicals were purchased from Sigma-Aldrich Company unless otherwise

indicated. Alexa Fluor 350 phalloidin (A22281; 1:200 for staining) and Alexa
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Fluor 594 a-bungarotoxin (BTX) (B-13423; 1:3,000 for staining) were

purchased from Invitrogen. Matrix metalloproteinase (MMP) inhibitor N-[(2R)-

2(hydroxamideocarbonylmethyl)-4-methylpantanoyl]-L-tryptophan methyla-

mide (GM6001) (364206) and b-Secretase inhibitor IV (565788) were pur-

chased from Calbiochem (EMD Millipore). Information of antibodies was as

follows: neurofilament (Millipore) (AB1991; 1:1,000 for staining); synaptophysin

(Dako) (A0010; 1:2,000 for staining); LRP4 (ECD) clone N207/27 (UC Davis/NIH

NeuroMab Facility) (75-221; 1:1,000 for western blotting); Flag (M2) (Sigma-

Aldrich) (F3165; 1:2,000 for western blotting); 4G10 (Millipore) (05-1050X;

1:2,000 for western blotting); GFP (Abcam) (ab6556; 1:2,000 for western blot-

ting); b-III-Tubulin (Covance) (MMS-435P; 1:1,000 for immunostaining); HB9

antibodies (C-terminal 307–403, gift fromDr. Samuel Pfaff; 1:4,000 for staining)

(Thaler et al., 1999); synapsin (sc-20780; 1:500 for immunostaining); SV2

(Developmental Studies Hybridoma Bank) (1:1,000 for immunostaining);

a-Tubulin (sc-23948; 1:3,000 for western blotting); b-actin (Novus) (NB600-

501; 1:3,000 for western blotting); and Alexa Fluor 488 goat anti-rabbit IgG

(Invitrogen) (A-11034, 1:1,000 for staining). Polyclonal horseradish peroxidase

(HRP)-conjugated goat anti-rabbit IgG (32260), goat anti-mouse IgG (32230),

and goat anti-rat IgG (31470) secondary antibodies were purchased from

Pierce (Thermo Scientific) (1:3,000 for western blotting). Anti-MuSK, anti-

rapsyn, and anti-AChRa antibodies were described previously (1:1,000 for

western blotting) (Luo et al., 2002).

Original agrin and MuSK constructs were gifts from Dr. Zach Hall, and orig-

inal LRP4 constructs were gifts fromDr. Tatsuo Suzuki. Flag-MuSKwas gener-

ated as previously described (Zhang et al., 2008). To generate Flag-LRP4 and

Flag-ecto-LRP4, we amplified full-length LRP4 and ecto-LRP4 cDNA by PCR

from original LRP4 construct and subcloned into HindIII/BglII sites in pFlag-

CMV1 downstream of an artificial signal peptide sequence and a Flag epitope.

LRP4-miRNA construct miLRP4-1062 was generated using the BLOCK-It

Pol II miR RNAi Expression Vector Kit (K4936-00, Invitrogen), which has

been previously described and verified to be most potent in inhibiting LRP4

expression (Zhang et al., 2008). For all the constructs, the authenticity was

verified by DNA sequencing in Eurofins MWG Operon.

Generation of LRP4 Floxed Mice, Crossing, and Genotyping

LRP4loxP mice, in which the exon 1 of the LRP4 gene was flanked by loxP sites,

were generated as described in Supplemental Experimental Procedures. They

were crossed with HSA-Cre and HB9-Cre transgenic mice to generate muscle

or motoneuron specific knockout (KO) as well as double knockout (dKO) LRP4

mutant mice. The mutant mice were generated on a BL6/129 mixed back-

ground and backcrossed into C57BL/5J mice. Crosses generated the ex-

pected Mendelian numbers of each genotype and genotyping procedures

were described in Supplemental Experimental Procedures. Mice were housed

in a room with a 12 hr light/dark cycle with ad libitum access to water and

rodent chow diet (Diet 1/4’’ 7097, Harlan Teklad). Experiments with animals

were approved by Institutional Animal Care and Use Committee of the Georgia

Health Sciences University.

Light Microscopic and Electrophysiological Analysis of NMJs

Whole-mount staining of diaphragms, quantitative analysis of NMJs, single

muscle fiber assay, and electrophysiological recording were performed as

previously described with modification (Dong et al., 2006-2007; Li et al.,

2008) (see Supplemental Experimental Procedures for details).

Electron Microscopy Analysis

Electron microscopic studies were carried as described previously (Wu et al.,

2012). Briefly, entire diaphragms (P0 and P15) were isolated and fixed in 2%

glutaraldehyde and 2% paraformaldehyde in 0.1 M phosphate buffer for 1 hr

at 25�C and 4�C overnight. Synaptic segments of muscles were isolated and

fixed in sodium cacodylate-buffered (pH 7.3) 1% osmium tetroxide for 1 hr

at 25�C. After washing three times with phosphate buffer, 10 min each,

synaptic segments were dehydrated through a series of ethanol steps (30%,

50%, 70%, 80%, 90%, and 100%), rinsed with 100% propylene oxide three

times, embedded in plastic resin (EM-bed 812, EM Sciences), and subjected

to serial thick sectioning (1–2 mm). Some sections were stained with 1%

toluidine blue for light microscopic identification of phrenic nerves. Adjacent

sections were cut into ultra-thin sections, mounted on 200 mesh unsupported
copper grids, and stained with uranyl acetate (3% in 50% methanol) and

lead citrate (2.6% lead nitrate and 3.5% sodium citrate [pH 12.0]). Electron

micrographs were taken by a JEOL 100CXII operated at 80KeV. Micrographs

were digitized and morphometric analysis was performed using National Insti-

tutes of Health (NIH) Image J software, as described previously (An et al., 2010;

Reddy et al., 2003).

qRT-PCR and Biochemical Analysis

qRT-PCR was performed as described previously (Liu et al., 2011). Pull-down

assays and western blotting were carried out as described previously (Luo

et al., 2008). Details are provided in Supplemental Experimental Procedures.

In Vitro AChR Clustering Assay

AChR clusters in cultured myotubes were assayed as described previously

(Luo et al., 2002, 2008; Zhang et al., 2008). Details are provided in Supple-

mental Experimental Procedures.

Imaging of Motoneurons in Spinal Cords

Spinal cords betweenC3andC5were dissected fromP0mice, fixed in 4%PFA

inPBS (pH7.3) overnight, immersed in 0.1Mphosphate buffer (pH7.3) contain-

ing 30% sucrose for 24 hr, and embedded in OCT compound (Tissue-Tek)

(Sakura Finetek). Cross-sections (14 mm) were stained by hematoxylin and

eosin or with anti-HB9 antibodies as described previously (Arber et al., 1999).

For quantification, HB9-positive motor neurons from hemiventral columns in

every fourth section were counted by individuals blind to genotypes.

Neuron-HEK293 Cells Coculture Assay

Cortical neurons were prepared from Sprague Dawley rat embryos (E18) and

cultured in the neurobasal medium (21103-049; Invitrogen) supplemented

with 13 B27 (17504-044; Invitrogen) and 13 penicillin-streptomycin (30-003-

CI; Cellgro) as described previously (Ting et al., 2011). Neuron-HEK293 cells

coculture assays were set up as previously described (Biederer et al., 2002;

Fogel et al., 2011; Graf et al., 2004; Scheiffele et al., 2000). Briefly, HEK293

cells in 60 mm culture dishes were cotransfected with 8 mg Flag-LRP4 and

pEGFPC1 (BD Biosciences Clontech) vector (10:1) or pEGFPC1 alone using

Lipofectamine 2000 (11668-019; Invitrogen). Twenty-four hours later, 60,000

HEK293 cells were resuspended and cocultured with primary cortical neurons

(DIV 7). Neurons had been seeded on coverslips (12-545-84; Fisher Scientific),

whichwere coatedwith Ploy-L-Lysine (P2636; Sigma-Aldrich) in 12-well plates

at 30,000 cells/well. After 24–48 hr of coculture, cells were fixed with 4% para-

formaldehyde and stained for synapsin or SV2. For quantification, HEK293

cells contacting axons with synapsin or SV2 punctas were accounted as posi-

tive (Umemori and Sanes, 2008). Integrated puncta intensity was quantified as

described previously (Graf et al., 2004). The intensity of synapsin or SV2 stain-

ing in neurites contacting HEK293 cells was subtracted with off-cell back-

ground and normalized to synapsin or SV2 intensity in neurites in cell-free

regions (also subtracted with off-cell background).

Statistical Analysis

Statisticswere computed usingPrism5.0 (GraphPad) software. Survival curves

were first analyzed for all genotypes and, if significant, reanalyzed for the exper-

imental pair using the log rank (Mantel-Cox) test. All data were presented as

mean ± standard error of the mean (SEM) and analyzed using Student’s t test

or two-way ANOVA analysis, wherever appropriate. Graphs were also gener-

ated by Prism 5.0. Difference was considered significant at p value < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, one table, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2012.04.033.
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