Recombinant AAV Virus Production - Packaging & Purification

Triple Transfection of HEK293T Cells

- 1. 24 hours before transfection, seed HEK cells into 8 x 150-mm dishes to aim for 80%-90% confluency for next day transfection (normal housing - 37°C in 5% CO2)
- 2. For transfection (for 1 dish for 5 multiply times 5)
 - a. Make PEI + Opti-MEM (Gibco) AND DNA + Opti-MEM
 - b. 120 uL PEI (should be 3x total transfected DNA; concentration is 1ug/uL) + 4 mL Opti-MEM and mix well
 - c. DNA (40 ug per dish, see recombinant AAV production in plasmid production section) + 4 mL Opti-MEM and mix well
 - i. For DNA pAAV : PUCmini-iCAP-PHP-B (PHP-B):pHelper at ratio of 1:1:2 respectively, specifically 10 ug: 10 ug: 20 ug for each dish (total 40 ug)
 - d. Mix PEI solution and DNA solution (add DNA to PEI)
 - e. Cap tube and mix thoroughly
 - f. Allow to rest for 20-30 minutes (transfection solution should be somewhat cloudy)
 - g. Add 8 mL per dish to 12 mL supplemented DMEM
 - h. 8 hours later change media
 - i. 20 mL of supplemented DMEM (Gently change, preheat at 37°C in incubator)
 - ii. Throw away transfection media

Daily Media Harvest (When media is turning towards yellow, will increase over 5 days as cells increase)

- 1. Warm supplemented DMEM
- 2. Gently extract media and store in 1-liter bottle
- 3. Even more gently add 20 mL supplemented DMEM, using side of dish to aid speed

Cell Harvest (When cells are falling off bottom of dish, around 4-6 days)

- 1. Resuspend cells into dish with existing media until all cells are off the bottom
- 2. Put resuspended cells into 50 mL tubes and centrifuge at 2,000g for 15 minutes at -4°C
- a. Pour off supernatant to media extraction bottle
- i. Allow excess media to drip back down and extract
- b. Take pellet to step 3
 - 3. Resuspend pellet in 5mL SAN buffer + 8 uL SAN enzyme. Add 100 U of SAN (4μl of 25 U/μl SAN) per milliliter of SAN buffer
 - 4. Incubate in a 37°C waterbath for 1 hour
 - 5. Dry-ice ethanol freeze and keep at 20°C overnight

PEG Precipitation of Supernatant | Media

- 1. Aliquot 40 mL into 50 mL tubes
- 2. Add 10 mL 40% PEG (PEG should be added at 1/5 final concentration for final PEG concentration of 8% (wt/vol))
- 3. Tighten cap and mix by inversion of tube 10 times
- 4. Incubate overnight at 4°C (must be overnight to allow PEG to bind AAV, especially for HEK293T that throws a lot of AAV into the media)

PEG Pellet and Cell Harvest Resuspension (consult Hongying to get advice on tips)

- 1. Centrifuge the PEG + media at 4,000g for 30 min at 4°C
- 2. Pour off the supernatant (into bleach)
 - a. Allow excess media to drip back and aspirate off
- 3. PEG pellet resuspension
 - a. Add 1 mL SAN buffer + 4 uL SAN to resuspend PEG pellet
- 4. Thaw cell harvest in 37°C and add PEG pellet resuspension
- 5. Add 1 mL SAN Buffer + 4 uL SAN to combined solution
- 6. Incubate in 37°C waterbath for 1 hour
- 7. Prepare iodixanol density gradient (below)
- 8. After incubation centrifuge at 2,000g for 10 minutes at room temperature a. Take off supernatant and spin down again at 3,000g for 15 minutes
- 9. Load supernatant to the top of iodixanol gradient

Iodixanol Gradient

- 1. Prepare solutions for iodixanol gradient from reagents section
- 2. Layer in from 60%-15% (bottom to top) into OptiSeal Polypropylene Tube (Beckman)
- 3. Add in supernatant and weigh for balance to .01 g with other tube
 - a. Avoid bubbles or tube will collapse
 - b. Add SAN buffer to full seal so that top is touching
- 4. Seal with black top
- 5. Load in tube into ultra centrifuge rotor Type 70Ti 361625 (32.4 mL)
- 6. Add spacer to the top, if not sample will be crushed
- 7. Spin at 350,000g (58,400 r.p.m.) for 2 hours and 25 minutes at 18°C with slow acceleration
- 8. Gather 5 or 10 mL syringe and 16 or 18 gauge needle
- Using needle, puncture right at the 60% and 40% layer and allow fluid to flow out
 a. If flow is low attach needle and slowly pull out
- 10. Collect around 5 mL, but avoid the 40%/25% interface layer is this is highly proteinaceous
- 11. Add 10ml PBS to mix

Virus Concentration and Buffer Exchange

- 1. Prepare the 3 following solutions
 - a. Pluronic F68, 10% solution
 - b. 0.1% in PBS
 - i. 49.5 mL PBS
 - ii. 500 uL Pluronic F68
 - c. 0.01% in PBS
 - i. 45 mL PBS
 - ii. 5 mL of (b)
 - d. 0.001% in PBS
 - i. 45 mL PBS
 - ii. 5 mL (b)
 - iii. 200mM NaCl
 - 2. Cover the filter (Pierce protein concentrator PES, 100K MWCO 5-20mL, ThermoFisher) with 10 mL of 0.1% Pluronic F68 PBS and incubate for 10 minutes at room temperature
 - 3. Take out the 0.1% Pluronic F68 PBS

- 4. Add 10 mL of 0.01% Pluronic F68 PBS
- 5. Spin at 3000 RPM for 5 min at 4°C
- 6. Discard the flow through and add 10 ml 0.001% Pluronic F68 + 200mM NaCl PBS
- 7. Spin at 3000 RPM for 5 min at 4° C
- 8. Discard the flow through
- 9. Add sample
- 10. Spin at 3500 RPM for 1 hour at 4°C (if the liquid shows some color add more PBS to wash, then centrifuge again)
 - a. Continue spinning at 1hour increments until sample is around 500 uL
- 11. Titrate sample
- 12. Store at 4°C for short term (2 weeks) or aliquot at ~15 ml per tube and store at -80°C for long term

Virus Titration (If 1st time, make standards – see below)

- 1. Treat purified AAV sample with DNase I to eliminate any DNA contaminates (DNase will not penetrate Virus)
 - a. 5 uL of sample + 39 uL of H20 + 5 uL 10X DNase buffer + 1uL DNase
 - b. Gently mix (no vortexing)
 - c. Incubate 30 minutes at 37°C
 - d. Inactivate DNase at 95°C for 3 minutes
- 2. Dilute DNase-treated AAV according to dilution standard:
 - a. Dilution standard
- 3. Create standard

Should aliquot the standard to different tubes for experiment (do not thaw and refreeze)

- a. Calculate amount of stock to start with:
 - i. Size of eGFP: 7563 bp
 - ii. Concentration: 1.42 ug/uL
 - iii. MW= 7563 bp x 650 daltons/bp (g/mole) = 4.916×10^{6} grams/mole
 - iv. Moles/uL=1.42 ug/ul / 4.916 x 10^6 grams/mole = 2.889 x 10^-13 moles/uL
 - v. Molecules/uL=2.889 x 10^-13 moles/uL x 6.022145 x 10^23 molecules/mole=17.395 x 10^10 molecules/uL
- b. To obtain a solution of $2x10^9$ molecules/uL
 - i. 17.395 x 10^10/2 x 10^9= 86.975 uL
 - ii. 100/86.975= 1.15 uL
 - iii. So we need to dilute 1.15 uL stock into 98.85 uL H20
 - c. Then dilute the following standards:

Volume of 2x109 stock or previous dilution (µL)	Volume of nuclease-free water (uL)	Molecules per μL
10	90	2x10^8
10 of 2x108 dilution	90	2x10^7
10 of 2x107 dilution	90	2x10^6
10 of 2x106 dilution	90	2x10^5

10 of 2x105 dilution	90	2x104
10 of 2x104 dilution	90	2x103

4. Next dilute samples as it follows:

Dilution Series	Volume of sample(uL)	Volume of nuclease free water (uL)	Dilution factor	Total dilution
Dilution 1 (DNase step)	5uL AAV stock	45 uL	10x	10x
Dilution 2	5uL Dil. 1	95 uL	20x	200x
Dilution 3	20uL Dil. 2	80 uL	5x	1000x
Dilution 4	20uL Dil. 3	80 uL	5x	5000x
Dilution 5	20uL Dil. 4	80 uL	5x	25000x
Dilution 6	20uL Dil. 5	80 uL	5x	125000x
Dilution 7	20uL Dil. 6	80 uL	5x	625000x
Dilution 8	20uL Dil. 7	80 uL	5x	3125000x

5. Samples expected to have a titer $<1x10^{12}$ GC/mL, use Dilutions 3-6

6. Samples expected to have a titer $>3.6x10^{13}$ GC/ml, use Dilutions 5-8

- 7. Run triplicate qPCR
 - a. Create master mix
 - i. 7.5 uL 2X SYBR Green Master Mix
 - ii. 1.5 uL Primers
 - iii. 5 uL H20
 - iv. 1 uL Dilution DNA
 - b. Run triplicates:

	1	2	3	4	5	6	7	8	9	10	11	12
Α	10^9	10^9	10^9	_10^8	10^8	10^8	10^7	10^7	10^7	10^6	10^6	10^6
B	10^5	_10^5	10^5	10^4	10^4	10^4	NTC	NTC	NTC			
С	D-3	D-3	D-3	_D-4	D-4	D-4	D-5	D-5	D-5	D-6	D-6	D-6

Analyze data according to standard curve (will add later according to addgene titer calculator)

 a.
 a.

Recombinant AAV production (Plasmid production) Split Cells (Could be more thorough)

- 1. Suction off old media
- 2. Wash with Dulbecco's Phosphate Buffered Saline (1-2 mL per dish)
- 3. Add 1ml .25% Typrsin
 - a. Put back in the incubator
 - b. Wait 5-10 minutes
- 4. Once cells are falling off, add 1 mL of fortified DMEM
 - a. Resuspend cells until they are mostly off the dish

- 5. Centrifuge 5 minutes at 900 RPM
- 6. Add 8-10 mL DMEM to dish
- 7. Suction off supernatant (with trypsin)
- 8. Gently, gently and thoroughly resuspend cells in 8-10 mL of fortified DMEM
- 9. Aliquot cells in dish according to desired density

Reagents (not common elsewhere; specific to AAV production/packaging)

Supplemented DMEM (DMEM 1x + 10% FBS + 1x Pen-Strep)

- 1. Add 50 mL FBS (Gemini) to DMEM 1x (Gibco)
- 2. Add 5 mL of 100x Pen-Strep (Gibco)

SAN Digestion Buffer

- 1. 29.22 g NaCl
- 2. 4.85 g Tris Base
- 3. 2.03 g MgCl2-6H20
- 4. Add to 1 Liter DiW
- 5. Procedure
 - a. Mix
 - b. Filter-sterilize
 - c. pH should be around 10
 - d. Can store at room temperature for several months

SAN + SAN Digestion Buffer

- 1. 4 ul of 25 units/uL of SAN per milleter of SAN digestion buffer (4uL SAN/1mL SAN buffer)
- 2. Pipette to mix

40% (wt/vol) PEG Stock Solution

- 1. Add 500mL DiW into sterile bottle a
- 2. Add another 500mL DiW into bottle b
- 3. Add 146.1 g NaCl to bottle b and mix until dissolved
- 4. Add 400 g PEG (polyethylene glycol)
 - a. Heat and spin at 37 C for overnight/until dissolved

i. Can expedite by heating until 65 C until no flecks are dissolved (solution might be turbid)

- 5. Add bottle a to bottle b and filter-sterilize into bottle a
 - a. Filter by pre-wetting the filter minimally with DiW
 - b. Filter should take around 1-2 hours due to the viscosity of the solution

DPBS + high salt (1M NaCl/PBS-mK buffer)

- 1. 29.2 g NaCl
- 2. .07455 g KCl
- 3. .2807 g MgCl2-6H20
- 4. 500m mL filtered PBS
- 5. Mix all together (Mix in order of list)

DPBS + low salt (1 X PBS-mK Buffer)

- 1. .07455 g KCl
- 2. .2807 MgCl2-6H20
- 3. 500 mL filtered PBS
- 4. Mix all together (Mix in order of list)

Iodixanol density gradient solutions (15%, 25%, 40%, 60% (wt/vol) iodixanol)

1. Widst make n				
		1 Rxn 5 mL per	8	
	60% iodixanol stock	1 x PBS-MK buffer	1 M NaCl PBS- Mk buffer	Phenol red/ul
60% iodixanol	5 mL			45 uL
40% iodixanol	3.3 mL	1.7 mL		
25% iodixanol	2 mL	3 mL		30 uL
15% iodixanol	1.25 mL		.3.75 mL	
		2 Rxn 10 mL per		
60% iodixanol	10 mL			_90 uL
40% iodixanol	6.6 mL	3.4 mL		
25% iodixanol	4 mL	6 mL		_60 uL
15% iodixanol	2.5 mL		7.5 mL	

1. Must make fresh every time

2. Using glass tube and dropper add 60% (bottom), 40% (middle-bottom), 25% (middle-top), 15% (top) slowly drop by drop. Ensure not to disturb solution

3. Add virus sample on top